算子代数:TomitaTakesaki理论

算子代数:Tomita-Takesaki理论

1.背景介绍

算子代数(Operator Algebra)是数学和物理学中的一个重要分支,主要研究在希尔伯特空间上定义的算子的代数结构。Tomita-Takesaki理论是算子代数中的一个核心理论,主要用于研究von Neumann代数的自同构群。该理论由日本数学家Tomita Minoru和Takesaki Masamichi在20世纪60年代提出,极大地推动了算子代数的发展。

Tomita-Takesaki理论的核心思想是通过模子(modular operator)和模自同构(modular automorphism)来研究von Neumann代数的结构和性质。该理论在量子力学、统计力学和量子场论中有着广泛的应用。

2.核心概念与联系

2.1 von Neumann代数

von Neumann代数是定义在希尔伯特空间上的闭合*-代数,具有强闭合性和包含单位元。它们是算子代数的一个重要子类,广泛应用于量子力学和统计力学。

2.2 模子(Modular Operator)

模子是Tomita-Takesaki理论中的一个关键概念。对于一个

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值