半监督学习 (SemiSupervised Learning) 原理与代码实例讲解

半监督学习 (Semi-Supervised Learning) 原理与代码实例讲解

作者:禅与计算机程序设计艺术 / Zen and the Art of Computer Programming

关键词:半监督学习、数据标签、无监督学习、有监督学习、算法融合、数学模型

1. 背景介绍

1.1 问题的由来

在机器学习领域,数据集通常分为两类:带有标签的数据(有监督学习)和未带标签的数据(无监督学习)。有监督学习方法需要大量带有标签的数据来训练模型,而无监督学习方法则利用未带标签的数据进行模式识别和聚类。然而,获取大量高质量的标签数据往往成本高昂且耗时。半监督学习(Semi-Supervised Learning)旨在解决这个问题,通过利用有限的带标签数据和大量的未带标签数据,提高学习效率和模型性能。

1.2 研究现状

近年来,半监督学习已成为机器学习研究中的一个重要分支,吸引了大量研究者的关注。随着深度学习技术的发展,基于深度学习的半监督学习方法得到了广泛应用,比如利用自动编码器、生成对抗网络(GANs)以及图神经网络(GNNs)等。这些方法试图通过结构

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值