deepseek r1 量化版本 Vllm 部署运行

以下是基于搜索结果的 DeepSeek-R1 量化版本通过 vLLM 部署运行的步骤及关键注意事项:


一、部署前提

  1. 硬件要求

    • GPU:至少需 NVIDIA RTX 4090(24GB 显存)或更高配置(如 A100/H100),具体取决于模型量化版本。例如:
      • R1-Zero 671B 满血版:需 16-18 张 H100(80GB)GPU 集群。
      • 蒸馏版(如 Qwen-7B):单张 RTX 4090 即可运行。
    • 内存与存储:建议 64GB 以上内存,固态硬盘空间根据模型大小调整(如 Qwen-7B 需约 500GB)。
  2. 软件环境

    • 安装支持 FP8/BF16 推理模式的 vLLM(版本 ≥0.4.0)。
    • 推荐使用 CUDA 12.1+Py
### 使用 DeepSeek 进行 R1 量化的指南 #### 准备工作 为了成功部署运行 DeepSeek-R1量化版本,需确保环境满足一定的硬件和软件条件。这包括但不限于拥有足够的计算资源以及安装必要的依赖库[^2]。 #### 安装依赖项 首先,在目标机器上设置 Python 环境,并利用 pip 工具来安装所需的包。对于 vLLM 库以及其他辅助工具来说,可以通过如下命令完成安装: ```bash pip install vllm transformers torch datasets accelerate ``` #### 下载预训练模型权重文件 接着获取已经过优化处理后的 DeepSeek-R1 权重文件。通常这些会被托管于云端存储服务中,比如 Hugging Face Model Hub 或者其他公共仓库。下载链接可能形如 `unsloth/DeepSeek-R1-Distill-Llama-8B-GGUF` 所指向的位置[^3]。 #### 编写启动脚本 创建一个新的 shell 脚本来简化后续操作流程。下面给出了一段用于加载指定配置参数并执行推理过程的例子: ```bash #!/bin/bash ./llama.cpp/llama-cli \ --model unsloth/DeepSeek-R1-Distill-8B-GGUF/DeepSeek-R1-Distill-8B-Q4_K_M.gguf \ --cache-type k_q8_0 \ --threads 16 \ --prompt '<|User|>What is 1+1?<|Assistant|>' \ --n-gpu-layers 20 \ -no-cnv ``` 这段脚本指定了要使用的模型路径、缓存类型、线程数、提示符格式化方式还有 GPU 层的数量等选项。其中特别需要注意的是 `--n-gpu-layers` 参数决定了多少比例的神经网络结构会迁移到图形处理器上去加速运算效率;而 `-no-cnv` 则表示不启用某些特定功能以适应不同场景下的需求差异。 #### 测试与验证 最后一步就是实际测试整个系统的性能表现了。可以先从小规模的数据集入手来进行初步评估,观察输出结果是否符合预期。如果一切正常,则可逐步扩大应用场景直至全面投入使用。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值