FM算法为什么适用于稀疏数据

FM算法因其表达式特性,在数据稀疏时,仍能通过矩阵分解进行有效训练。即使特征值为0,只要部分特征不全为0,偏导数就不会为0,确保参数可训练,从而适应稀疏数据的处理。
摘要由CSDN通过智能技术生成

 

FM的原理https://zhuanlan.zhihu.com/p/37963267

原理

FM的表达式,包含常数项,一阶项,二阶项

正常情况下,w_i\cdot x_i只有当x_i不为0的情况下,w_i才能被训练到

同样的,w_i_jx_ix_j只有当x_ix_j

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值