如何理解Bayes贝叶斯公式|如何理解极大似然法|这两个有什么关系?贝叶斯定理是什么|贝叶斯公式在机器学习中有什么用?

本文介绍了贝叶斯公式及其在机器学习中的作用。贝叶斯公式用于表示事件之间的依赖关系,通过图形解释了条件概率的概念。在机器学习中,贝叶斯公式用于参数估计,通过极大似然法寻找概率分布函数的最佳参数,当参数取值无限时,采用梯度下降进行优化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

贝叶斯公式=贝叶斯定理

贝叶斯公式到底想说啥

贝叶斯公式就是想用概率数学来表示事件发生依赖关系。
贝叶斯公式长下面这样:
在这里插入图片描述

用图形怎么表示贝叶斯公式

P ( X = x ) P(X=x) P(X=x)就是X的面积。
P ( Y = y ) P(Y=y) P(Y=y)就是Y的面积。
P ( X = x ∣ Y = y ) P(X=x|Y=y) P(X=xY=y)是什么? P ( X = x ∣ Y = y ) P(X=x|Y=y) P(X=xY=y)是指Y发生的情况下X发生的概率。用图形表示就是,只看Y的情况下Y里面的X占比多少。这不就是相交部分除以Y的面积么?相交部分计算方式=X的面积*相交部分占X的比率。
再看看前面的公式就完全能理解了。
在这里插入图片描述

贝叶斯公式在机器学习中有什么用?

答:用于参数估计。机器学习做的事情其实就是找到一个概率分布函数,输入一个数据输出是这个数据属于某个类的概率。
那么怎么找这个概率分布函数呢?一般是默认是高斯分布。
假设样本的概率分布是高斯分布。高斯分布长下面这样,有两个参数 u 和 σ u和\sigma uσ。贝叶斯公式就是用来估计这两个参数。
在这里插入图片描述
那么贝叶斯公式怎么估计这两个参数你呢?将 u 和 σ u和\sigma uσ记作为 θ \theta θ。也就是说我们需要估计 θ \theta θ的值是多少。
在这里插入图片描述
其中 P ( X = x ∣ θ = θ ^ ) = = f θ ^ ( x ) P(X=x|\theta=\hat {\theta})==f_{\hat \theta}(x) P(X=xθ=θ^)==fθ^(x)。上面那个公式的意思就是说, θ \theta θ有很多很多取值, θ ^ \hat \theta θ^是其中一个。那么怎么知道哪个最好呢?计算 θ ^ \hat \theta θ^是X的最好参数的可能性 P ( θ = θ ^ ∣ X = x ) P(\theta = \hat \theta |X=x) P(θ=θ^X=x),哪个可能性最大就选哪个参数。这就是极大似然法。,极大似然法就是现有有多个可能的参数取值,我不知道取哪个最好。为了知道取哪个最好。我要计算出各个参数为优参数的可能性。然后将可能性最大的那个参数作为目前的概率分布函数最优参数。
那假如 θ \theta θ取值无限种情况呢?
θ \theta θ取值无限的情况下,需要用梯度下降优化极大似然法这个等式.下面这个等式。不懂梯度下降可以看看这两篇文章
https://www.zhihu.com/question/305638940/answer/670034343
https://blog.csdn.net/varyshare/article/details/89556131
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值