关注“智核工场”公众号,获取更系统的信息。
智能驾驶的端到端模型的评测是一个复杂且多维度的任务,需要从安全性、泛化性、鲁棒性、实时性等多个角度综合评估。以下是一个系统化的评测框架:
一、核心评测维度
-
安全性
-
碰撞率:在仿真和真实场景中统计模型导致碰撞的概率。
-
交通规则合规性:违反交通信号、越线、超速等违规行为的次数。
-
危险场景处理:对突发障碍物、紧急刹车、行人横穿等极端场景的应对能力。
-
安全边界:模型对自身能力边界的认知(如是否在不确定时移交控制权)。
-
-
泛化能力
-
场景多样性:在不同天气(雨雪雾)、光照(夜间/逆光)、道路类型(高速/城市/乡村)下的表现。
-
长尾问题处理:对罕见场景(如特殊交通标志、异常车辆行为)的适应能力。
-
跨区域泛化:模型在未训练过的地理区域(如不同国家交通规则)中的表现。
-
-
鲁棒性
-
传感器噪声:对摄像头模糊、激光雷达点云缺失等输入噪声的容忍度。
-
对抗攻击:对对抗样本(如误导性贴纸)的抵抗能力。
-
系统故障恢复:部分传感器失效时的降级表现。
-
-
驾驶舒适性
-
控制平滑性:转向、加速/刹车的平顺性(通过加速度变化率、jerk值量化)。
-
乘客主观体验:通过人类驾驶员或乘客评分(如MOS评分)。
-
-
实时性
-
推理速度:端到端延迟(输入到控制指令的时间)是否满足实时需求(通常需≤100ms)。
-
硬件兼容性:在不同算力平台(如车规级芯片)上的性能表现。
-
二、评测方法与工具
-
仿真测试
-
高保真仿真平台:使用AiSim、Carla等高置信度模拟复杂场景,覆盖百万级测试里程。也可重点关注世界模型(World Model)和3DGS生成的高保证场景。
-
场景库构建:基于真实数据生成边缘案例(corner cases),如NVIDIA DRIVE Sim、Waymo Open Dataset中的挑战性场景。
-
故障注入测试:人为引入传感器故障或环境干扰,验证系统鲁棒性。
-
-
真实道路测试
-
封闭场地测试:在可控环境中复现危险场景(如ISO 34502标准中的测试项目)。
-
开放道路测试:累计实际道路里程,统计MPI(Miles Per Intervention,每干预里程数)。
-
影子模式:通过对比人类驾驶员与模型决策的差异,发现潜在问题。
-
-
模块化分解评测
-
中间表示分析:对端到端模型的隐式中间层输出进行可视化(如注意力热图),验证其是否合理捕捉关键信息。
-
控制策略对比:与传统模块化方法(如规则引擎+MPC)的控制指令差异分析。
-
-
可解释性与可追溯性
-
因果分析:通过反事实推理(Counterfactual Reasoning)探究模型决策逻辑。
-
故障溯源:结合数据记录(如黑匣子)定位失效原因(感知错误/规划错误)。
-
三、评测指标量化
-
客观指标
-
安全性:碰撞率、MPI、违规次数。
-
效率:平均车速、通行时间、能耗(电动车型)。
-
舒适性:加速度标准差、jerk值、方向盘转角变化率。
-
泛化性:跨场景成功率、长尾场景覆盖度。
-
-
主观指标
-
人类评分:由专业测试员或乘客对驾驶风格进行Likert量表评分。
-
对比实验:与人类驾驶员或其他模型(如模块化方案)的盲测对比。
-
四、挑战与前沿方向
-
长尾问题
-
如何高效收集和评测罕见场景(如动物闯入、施工路段)。
-
解决方案:基于生成模型(如3DGS、NeRF、World Model)合成边缘案例,或使用主动学习筛选关键数据。
-
-
仿真-现实鸿沟
-
仿真环境与真实物理世界的差异可能导致评测偏差。
-
方向:构建数字孪生系统,通过真实数据闭环优化仿真器。
-
-
伦理与法规
如何定义安全阈值(如可接受的碰撞概率)并符合各国法规(如ISO 21448预期功能安全标准)。 -
动态评测体系
随着模型更新和环境变化(如新交通规则),需设计持续迭代的评测框架。
总结
端到端智能驾驶模型的评测需结合多模态测试环境、量化与主观评估结合、动态迭代的体系,同时关注技术可行性与伦理合规性。未来趋势是构建开放、标准化的评测平台(类似MLPerf),推动行业协作与技术进步。