自动驾驶, 开环训练, 开环测试, 深度学习, 仿真环境, 模型评估
1. 背景介绍
自动驾驶技术作为未来交通运输的重要发展方向,近年来取得了显著进展。其中,端到端自动驾驶方法凭借其简洁高效的架构,在自动驾驶领域获得了广泛关注。端到端自动驾驶方法将感知、决策和控制等多个模块融合在一起,通过深度学习模型直接将传感器数据映射到控制指令,简化了系统设计和开发流程。
然而,端到端自动驾驶方法的训练和测试面临着诸多挑战。传统的自动驾驶系统通常采用闭环训练方法,即在真实道路环境中进行数据采集和模型训练。然而,真实道路环境复杂多变,存在着安全风险和成本高昂等问题。因此,开环训练和开环测试成为端到端自动驾驶系统开发的重要手段。
2. 核心概念与联系
2.1 开环训练与闭环训练
- 闭环训练: 在真实环境中进行数据采集和模型训练,模型训练过程会受到真实环境的反馈,例如车辆速度、转向角度等。
- 开环训练: 在模拟环境中进行数据采集和模型训练,模型训练过程不受到真实环境的反馈,而是根据预设的场景和规则进行训练。
2.2 开环训练与开环测试
- 开环训练: