机器学习系列(一)感知器分类算法

分类算法有两种类型:感知器和适应性线性神经元

神经元的数学表示

w = [ w 1 w 2 . . . w m ] , x = [ x 1 x 2 . . . x m ] w=\begin{bmatrix} w_1 \\ w_2 \\ ... \\ w_m \\ \end{bmatrix} , x=\begin{bmatrix} x_1 \\ x_2 \\ ... \\ x_m\\ \end{bmatrix} w=w1w2...wm,x=x1x2...xm
z = w 1 x 1 + w 2 x 2 + ⋅ ⋅ ⋅ + w m x m z=w_1x_1 + w_2x_2 + ···+w_mx_m z=w1x1+w2x2++wmxm
其中w为权重,x为训练样本

感知机的训练步骤

  1. 把权重向量初始化为0,或把每个分向量初始化为[0,1]间任意小数
  2. 把训练样本输入感知机,得到分类结果(-1或1)
  3. 根据分类结果更新权重向量

激活函数

为了计算方便我们添加 w 0 x 0 w_0x_0 w0x0, 其中 w 0 = − θ , x 0 = 1 w_0=-\theta,x_0=1 w0=θx0=1
z = w 0 x 0 + w 1 x 1 + . . . + w m x m = w T x , ϕ ( z ) = { 1 if z>0 − 1 , otherwise z=w_0x_0 + w_1x_1+...+w_mx_m = w^Tx , \phi(z)=\begin{cases} 1 & \text {if z>0} \\ -1, & \text{otherwise} \end{cases} z=w0x0+w1x1+...+wmxm=wTx,ϕ(z)={11,if z>0otherwise
这样,当 z > 0 z>0 z>0时, ϕ ( z ) = 1 \phi(z)=1 ϕ(z)=1,当 z < 0 z<0 z<0时, ϕ ( z ) = − 1 \phi(z)=-1 ϕ(z)=1.

权重的更新算法

  • w ( j ) = w ( j ) + Δ w ( j ) w(j)=w(j)+\Delta w(j) w(j)=w(j)+Δw(j)
  • Δ w ( j ) = η ∗ ( y − y ′ ) ∗ x ( j ) \Delta w(j)=\eta*(y-y')*x(j) Δw(j)=η(yy)x(j) : y表示x(j)的正确分类,y’表示感知机算出来的分类,x(j)表示训练样本。可以看出来如果感知器的分类结果 y ′ y' y与正确分类 y y y相同时,那么可以得到 Δ w ( j ) = 0 \Delta w(j)=0 Δw(j)=0,也就可以得到 w ( j ) = 0 w(j)=0 w(j)=0,也就是说如果感知器可以正确对数据样本进行正确分类,那么对权重 w ( j ) w(j) w(j)就不需要进行调整;只有感知器得到了错误的分类结果之后,出需要调整权重向量 w ( j ) w(j) w(j)
  • η \eta η 表示学习率是[0,1]之间的一个小数,一般有使用者自己设置。通过反复运行模型,人为根据经验调整学习率 η \eta η,使得模型训练结果越来越好。
  • w ( 0 ) = 0 , Δ w ( 0 ) = η ∗ ( y − y ′ ) w(0)=0, \Delta w(0)=\eta*(y-y') w(0)=0,Δw(0)=η(yy)阈值的更新

举例说明如何更新权重

假设

  1. 权重向量初始化为: w = [ 0 , 0 , 0 ] w=[0,0, 0] w=[0,0,0]
  2. 训练样本的值: x = [ 1 , 2 , 3 ] x=[1,2,3] x=[1,2,3]
  3. 学习率: η = 0.3 \eta=0.3 η=0.3
  4. 这个样本的正确分类y=1
  5. 感知器算出来的分类是y’=-1

调整权重向量 Δ w ( 0 ) = 0.3 ∗ ( 1 − ( − 1 ) ) ∗ x ( 0 ) = 0.3 ∗ 2 ∗ 1 = 0.6 \Delta w(0)=0.3*(1-(-1))*x(0)=0.3*2*1=0.6 Δw(0)=0.3(1(1))x(0)=0.321=0.6 w ( 0 ) = w ( 0 ) + Δ w ( 0 ) = 0.6 w(0) = w(0)+\Delta w(0)=0.6 w(0)=w(0)+Δw(0)=0.6,则权重的第一个分量更新为0.6,即 w = [ 0.6 , 0 , 0 ] w=[0.6,0,0] w=[0.6,0,0]

同理, Δ w ( 1 ) = 0.3 ∗ ( 1 − ( − 1 ) ) ∗ x ( 1 ) = 0.3 ∗ 2 ∗ 2 = 1.2 \Delta w(1)=0.3*(1-(-1))*x(1)=0.3*2*2=1.2 Δw(1)=0.3(1(1))x(1)=0.322=1.2,则更新权重的第二个分量为 w ( 1 ) = w ( 1 ) + Δ w ( 1 ) = 1.2 w(1)=w(1)+\Delta w(1)=1.2 w(1)=w(1)+Δw(1)=1.2

同理, Δ w ( 2 ) = 0.3 ∗ ( 1 − ( − 1 ) ∗ x ( 2 ) ) = 0.3 ∗ 2 ∗ 3 = 1.8 \Delta w(2)=0.3*(1-(-1)*x(2))=0.3*2*3=1.8 Δw(2)=0.3(1(1)x(2))=0.323=1.8,则更新权重的第三个分量为 w ( 2 ) = w ( 2 ) + Δ w ( 2 ) = 1.8 w(2)=w(2)+\Delta w(2)=1.8 w(2)=w(2)+Δw(2)=1.8

最终可以得到更新后的权重向量为 w = [ 0.6 , 1.2 , 1.8 ] w=[0.6, 1.2, 1.8] w=[0.6,1.2,1.8]

这样就可以再次将新的训练样本输入到模型中,根据分类结果走相同的步骤继续改进权重向量。

感知器算法的适用范围

在这里插入图片描述
必须要满足上图中第一个图中的情况,也就是预测的数据可以现行分割,感知器的训练目标就是要找出这条线。而后面两个情况,是无法进行线性可分的,不适用于感知器算法进行分类。

代码实现

定义感知器类

import numpy as np

class Perceptron(object):
    """
    eta: 学习率
    n_iter: 权重向量的训练次数
    w_: 神经分叉权重向量
    errors_: 用于记录神经元判断出错次数
    """
    def __init__(self, eta = 0.01, n_iter = 10):
        self.eta = eta
        self.n_iter = n_iter
        pass
    
    def fit(self, X, y):
        """
        输入训练数据,培训神经元,X表示输入样本, y对应样本的正确分类
        X: shape[n_samples, n_features]
        n_samples:表示有多少个训练样本数量
        n_features: 表示有多少个属性
        例如:X: [[1,2,3], [4,5,6]] => n_samples=2;n_features=3

        y: [1, -1]表示第一个向量的分类是1, 第二个向量的分类是-1
        """

        """
        首先初始化权重为0
        加一是因为激活函数w0,也就是阈值,这样就只用判断输出结果是否大于0就可以了
        """
        self.w_ = np.zero(1 + X.shape[1])
        self.errors_ = []

        """
		只要出现错误分类,那么反复训练这个样本,次数是n_iter
		"""
        for _ in range(self.n_iter): 
            errors = 0
            """
            X:[[1,2,3], [4,5,6]]
            y:[1, -1]

            zip(X, y) => [[1,2,3,1], [4,5,6-1]]
            """
            for xi, target in zip(X,y):
                """
                update = η * (y-y')
                """
                update = self.eta * (target - self.predict(xi))
                """
                xi 是一个向量, 例如[1,2,3], target表示1
                update 是一个常量
                update*xi 等价于 [Δw(1) = X[1]*update, Δw(2) = X[2]*update, Δw(3) = X[3]*update]
                """
                # w_[1:]表示w忽略第0个元素,从第一个元素开始往后
                self.w_[1:] += update * xi
                self.w_[0] += update * 1
                errors += int(update != 0.0)
                self.errors_.append(errors)
            pass
        pass
            
    def net_input(self, X):
        """
        z = W0*1 + W1*X1 + W2*X2+ ...+ Wn*Xn
        """
        return np.dot(X, self.w_[1:]) + self.w_[0]

    def predict(self, X):
        """
        如果self.net_input(X) >= 0.0返回1, 否则返回-1
        """
        return np.where(self.net_input(X) >= 0.0 , 1, -1)

目前虽然有了感知器的分类算法,但是还没有运行起来,下面将如何使用这个感知器分类算法,然后将训练样本输入到模型中,最后进行预测数据。

介绍训练数据

有了基本模型后,要做的就是要把大量的数据,输入至模型中,让模型通过对大量数据的观察,总结出数据中隐含的某种规律,根据数据特点不断调节模型中神经元权重数值,当神经元的权重数值调节到合适的范围之内后,就可以利用训练后的模型对新的数据进行预测分类。
首先需要先介绍训练数据的数据结构。训练数据内容如下:
在这里插入图片描述
使用pandas工具,来读取数据,可以很容易的进行抽取数据。
首先安装pandas:pip install pandas -i https://pypi.douban.com/simple

import pandas as pd

file="./iris.csv"
df = pd.read_csv(file, header=None)
print(df.head())

结果输出如下:
在这里插入图片描述
可视化展示这个数据,使用matplotlib工具进行展示。

import matplotlib.pyplot as plt
import numpy as np
from test3 import df

# 将df中0到100行的数据的第四列赋值给y向量 
y = df.loc[0:100, 4].values
# 将Iris-setosa转为-1,其余转为1
y = np.where(y == 'Iris-setosa', -1, 1)
# print(y)
# 将df0到100行的数据的第0列和第2列抽取出来,赋值给x向量
X = df.iloc[0:100, [0, 2]].values
# print(X)
# 将X向量的钱50条数据的第0列作为x轴,第1列作为y轴坐标,画在二维坐标轴,画出来的点是红色的'o',
plt.scatter(X[:50, 0], X[:50, 1], color = 'red', marker='o', label='setosa')
plt.scatter(X[50:100, 0], X[50:100, 1], color = 'blue', marker='x', label='versicolor')
plt.xlabel('花瓣长度')
plt.ylabel('花径长度')
plt.legend(loc='upper left')
# 下面两行解决乱码问题
plt.rcParams['font.sans-serif'] = ['KaiTi'] # 指定默认字体
plt.rcParams['axes.unicode_minus'] = False

plt.show()

在这里插入图片描述
可以看出来这两类数据可以线性分割开。

一步一步调试

初始化eta=0.1, w=[0 0 0]

5.1,1.4,target=-1, self.net_input(x)=W0*1+W1*5.1+W2*1.4=0,self.predict(xi)=1,update=eta*(target-self.predict(xi))=0.1*(-2)=-0.2,errors=1,W=[1*(-0.2)5.1*(-0.2)1.4*(-0.2)]=[-0.2 -1.02 -0.28]
4.9,1.4,target=-1, self.net_input(x)=W0*1+W1*4.9+W2*1.4=-0.2*1+(-1.02)*4.9+(-0.28)*1.4=-0.3918432<0,self.predict(xi)=-1,update=eta*(target-self.predict(xi))=0.1*0=0,errors=1,W=[-0.2+1*0-1.02+4.9*0-0.28+1.4*0]=[-0.2 -1.02 -0.28]
4.7,1.3,target=-1, self.net_input(x)=W0*1+W1*4.7+W2*1.3=-0.2+(-4.794)+(-0.364)<0,self.predict(xi)=-1,update=0,errors=1,W=[-0.2 -1.02 -0.28]
5.4,1.7,target=-1,self.net_input(x)<0,self.predict(xi)=-1,update=0,errors=1,W=[-0.2 -1.02 -0.28]
7,4.7,target=1,self.net_input(x)<0,self.predict(xi)=-1,update=0.2,errors=2,W=[(-0.2)+(0.2*1) (-1.02)+(0.2*7) (-0.28)+(0.2*4.7)]=[0 0.38 0.66]
  1. 首先得到样本数据和分类标签target
  2. 然后计算预测标签的值predict
  3. 更新权重W=eta*(target-predict), 将上一次的权重W进行累加w(j)+Δw(j)
  4. 以此类推
  • 3
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值