amcl源码分析

1.pf.h

/**************************************************************************
 * Desc: Simple particle filter for localization.
 * Author: Andrew Howard
 * Date: 10 Dec 2002
 * CVS: $Id: pf.h 3293 2005-11-19 08:37:45Z gerkey $
 *************************************************************************/

#ifndef PF_H
#define PF_H

#include "pf_vector.h"
#include "pf_kdtree.h"

#ifdef __cplusplus
extern "C" {
#endif

// Forward declarations
struct _pf_t;
struct _rtk_fig_t;
struct _pf_sample_set_t;

// Function prototype for the initialization model; generates a sample pose from
// an appropriate distribution.
typedef pf_vector_t (*pf_init_model_fn_t) (void *init_data);

// Function prototype for the action model; generates a sample pose from
// an appropriate distribution
typedef void (*pf_action_model_fn_t) (void *action_data, 
                                      struct _pf_sample_set_t* set);

// Function prototype for the sensor model; determines the probability
// for the given set of sample poses.
typedef double (*pf_sensor_model_fn_t) (void *sensor_data, 
                                        struct _pf_sample_set_t* set);


// Information for a single sample
typedef struct
{
  // Pose represented by this sample
  pf_vector_t pose;

  // Weight for this pose
  double weight;

} pf_sample_t;


// Information for a cluster of samples
typedef struct
{
  // Number of samples
  int count;

  // Total weight of samples in this cluster
  double weight;

  // Cluster statistics
  pf_vector_t mean;
  pf_matrix_t cov;

  // Workspace
  double m[4], c[2][2];

} pf_cluster_t;


// Information for a set of samples
typedef struct _pf_sample_set_t
{
  // The samples
  int sample_count;
  pf_sample_t *samples;

  // A kdtree encoding the histogram
  pf_kdtree_t *kdtree;

  // Clusters
  int cluster_count, cluster_max_count;
  pf_cluster_t *clusters;

  // Filter statistics
  pf_vector_t mean;
  pf_matrix_t cov;
  int converged; 
} pf_sample_set_t;


// Information for an entire filter
typedef struct _pf_t
{
  // This min and max number of samples
  int min_samples, max_samples;

  // Population size parameters
  double pop_err, pop_z;

  // The sample sets.  We keep two sets and use [current_set]
  // to identify the active set.
  int current_set;
  pf_sample_set_t sets[2];

  // Running averages, slow and fast, of likelihood
  double w_slow, w_fast;

  // Decay rates for running averages
  double alpha_slow, alpha_fast;

  // Function used to draw random pose samples
  pf_init_model_fn_t random_pose_fn;
  void *random_pose_data;

  double dist_threshold; //distance threshold in each axis over which the pf is considered to not be converged
  int converged; 
} pf_t;


// Create a new filter
pf_t *pf_alloc(int min_samples, int max_samples,
               double alpha_slow, double alpha_fast,
               pf_init_model_fn_t random_pose_fn, void *random_pose_data);

// Free an existing filter
void pf_free(pf_t *pf);

// Initialize the filter using a guassian
void pf_init(pf_t *pf, pf_vector_t mean, pf_matrix_t cov);

// Initialize the filter using some model
void pf_init_model(pf_t *pf, pf_init_model_fn_t init_fn, void *init_data);

// Update the filter with some new action
void pf_update_action(pf_t *pf, pf_action_model_fn_t action_fn, void *action_data);

// Update the filter with some new sensor observation
void pf_update_sensor(pf_t *pf, pf_sensor_model_fn_t sensor_fn, void *sensor_data);

// Resample the distribution
void pf_update_resample(pf_t *pf);

// Compute the CEP statistics (mean and variance).
void pf_get_cep_stats(pf_t *pf, pf_vector_t *mean, double *var);

// Compute the statistics for a particular cluster.  Returns 0 if
// there is no such cluster.
int pf_get_cluster_stats(pf_t *pf, int cluster, double *weight,
                         pf_vector_t *mean, pf_matrix_t *cov);

// Display the sample set
void pf_draw_samples(pf_t *pf, struct _rtk_fig_t *fig, int max_samples);

// Draw the histogram (kdtree)
void pf_draw_hist(pf_t *pf, struct _rtk_fig_t *fig);

// Draw the CEP statistics
void pf_draw_cep_stats(pf_t *pf, struct _rtk_fig_t *fig);

// Draw the cluster statistics
void pf_draw_cluster_stats(pf_t *pf, struct _rtk_fig_t *fig);

//calculate if the particle filter has converged - 
//and sets the converged flag in the current set and the pf 
int pf_update_converged(pf_t *pf);

//sets the current set and pf converged values to zero
void pf_init_converged(pf_t *pf);

#ifdef __cplusplus
}
#endif


#endif

2.pf_kdtree.h

/**************************************************************************
 * Desc: KD tree functions
 * Author: Andrew Howard
 * Date: 18 Dec 2002
 * CVS: $Id: pf_kdtree.h 6532 2008-06-11 02:45:56Z gbiggs $
 *************************************************************************/

#ifndef PF_KDTREE_H
#define PF_KDTREE_H

#ifdef INCLUDE_RTKGUI
#include "rtk.h"
#endif


// Info for a node in the tree
typedef struct pf_kdtree_node
{
  // Depth in the tree
  int leaf, depth;

  // Pivot dimension and value
  int pivot_dim;
  double pivot_value;

  // The key for this node
  int key[3];

  // The value for this node
  double value;

  // The cluster label (leaf nodes)
  int cluster;

  // Child nodes
  struct pf_kdtree_node *children[2];

} pf_kdtree_node_t;


// A kd tree
typedef struct
{
  // Cell size
  double size[3];

  // The root node of the tree
  pf_kdtree_node_t *root;

  // The number of nodes in the tree
  int node_count, node_max_count;
  pf_kdtree_node_t *nodes;

  // The number of leaf nodes in the tree
  int leaf_count;

} pf_kdtree_t;


// Create a tree
extern pf_kdtree_t *pf_kdtree_alloc(int max_size);

// Destroy a tree
extern void pf_kdtree_free(pf_kdtree_t *self);

// Clear all entries from the tree
extern void pf_kdtree_clear(pf_kdtree_t *self);

// Insert a pose into the tree
extern void pf_kdtree_insert(pf_kdtree_t *self, pf_vector_t pose, double value);

// Cluster the leaves in the tree
extern void pf_kdtree_cluster(pf_kdtree_t *self);

// Determine the probability estimate for the given pose
extern double pf_kdtree_get_prob(pf_kdtree_t *self, pf_vector_t pose);

// Determine the cluster label for the given pose
extern int pf_kdtree_get_cluster(pf_kdtree_t *self, pf_vector_t pose);


#ifdef INCLUDE_RTKGUI

// Draw the tree
extern void pf_kdtree_draw(pf_kdtree_t *self, rtk_fig_t *fig);

#endif

#endif

3.pf_vector.h

/**************************************************************************
 * Desc: Vector functions
 * Author: Andrew Howard
 * Date: 10 Dec 2002
 * CVS: $Id: pf_vector.h 6345 2008-04-17 01:36:39Z gerkey $
 *************************************************************************/

#ifndef PF_VECTOR_H
#define PF_VECTOR_H

#ifdef __cplusplus
extern "C" {
#endif

#include <stdio.h>

// The basic vector
typedef struct
{
  double v[3];
} pf_vector_t;


// The basic matrix
typedef struct
{
  double m[3][3];
} pf_matrix_t;


// Return a zero vector
pf_vector_t pf_vector_zero();

// Check for NAN or INF in any component
int pf_vector_finite(pf_vector_t a);

// Print a vector
void pf_vector_fprintf(pf_vector_t s, FILE *file, const char *fmt);

// Simple vector addition
pf_vector_t pf_vector_add(pf_vector_t a, pf_vector_t b);

// Simple vector subtraction
pf_vector_t pf_vector_sub(pf_vector_t a, pf_vector_t b);

// Transform from local to global coords (a + b)
pf_vector_t pf_vector_coord_add(pf_vector_t a, pf_vector_t b);

// Transform from global to local coords (a - b)
pf_vector_t pf_vector_coord_sub(pf_vector_t a, pf_vector_t b);


// Return a zero matrix
pf_matrix_t pf_matrix_zero();

// Check for NAN or INF in any component
int pf_matrix_finite(pf_matrix_t a);

// Print a matrix
void pf_matrix_fprintf(pf_matrix_t s, FILE *file, const char *fmt);

// Compute the matrix inverse.  Will also return the determinant,
// which should be checked for underflow (indicated singular matrix).
//pf_matrix_t pf_matrix_inverse(pf_matrix_t a, double *det);

// Decompose a covariance matrix [a] into a rotation matrix [r] and a
// diagonal matrix [d] such that a = r * d * r^T.
void pf_matrix_unitary(pf_matrix_t *r, pf_matrix_t *d, pf_matrix_t a);

#ifdef __cplusplus
}
#endif

#endif
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值