用nn.Sequential实现图像的数据增强(augmentations)

代码example:

import torch
import torch.nn as nn

# 定义一些增强操作,例如随机水平翻转和归一化
augmentations = nn.Sequential(
    nn.RandomHorizontalFlip(),
    nn.Normalize(mean=[0.5], std=[0.5])
)

# 创建一个示例 tensor
candidate = torch.randn(1, 3, 224, 224)  # 假设这是一个图像 batch

# 应用增强操作
candidate_augmented = candidate.clone()
candidate_augmented.data = augmentations(candidate.data)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值