读论文《用于多变量时间序列预测的多尺度自适应图神经网络》

文章提出了一种名为MAGNN的新模型,旨在解决单一时间尺度限制和固定邻接矩阵的问题。模型采用多尺度金字塔网络和自适应图学习,通过矩阵分解优化计算效率。在多尺度时间序列预测中,MAGNN利用图神经网络捕捉变量间的关系,并通过特殊融合策略结合不同尺度的信息。此外,模型使用TCN进一步处理结果并确定每个尺度的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原标题《Multi-Scale Adaptive Graph Neural Network for Multivariate Time Series Forecasting》

动机

现有的工作只考虑了单一时间尺度上的时间依赖关系,这可能不能很好地反映许多实际场景中的变化,如图在不同的时间尺度上能看到不同的周期在这里插入图片描述
现有工作学习一个共享的邻接矩阵来表示变量间丰富的依赖关系,这使得模型有偏地学习一种突出的、共享的时间模式。
为解决上述的两个问题本文提出了Multiscale Adaptive Graph Neural Network (MAGNN)模型。

模型

模型的整体架构如下:
在这里插入图片描述

Multi-Scale Pyramid Network

在这里插入图片描述

这一步和之前看到的那篇多尺度时序预测差不多,每层降采样为原来的1/2倍。不过他这里采用了Inception的结构,右边是自定义超参的1维卷积,按作者所说模型对于超参会很敏感,在右边又加了一个1x1卷积+1x2池化,缓解这个情况提高泛化性。

Adaptive Graph Learning

在我看来,这一部分是文章的核心创新点,主要我一直都挺困惑像变量之间这种没有实在的东西要怎么建图,就文章来看已经有许多方法了,还是看的少了。该层的结构如下:
在这里插入图片描述
这一部分会对各个尺度构造关系图,但是直接计算的计算开销实在太大,作者利用矩阵分解的思想来简化计算。对于所有的尺度节点嵌入Enodes是共享的,而对于每一个尺度会有一个Escale的尺度嵌入,将这两个向量逐点相乘
在这里插入图片描述
这样就控制住了参数的数量,然后进行相似度计算:
在这里插入图片描述
最后为了节省图的计算开销,对矩阵进行稀疏化:
在这里插入图片描述
其中Sparse为:
在这里插入图片描述

Multi-Scale Temporal Graph Neural Network

在这里插入图片描述
这里他们仿照了之前的一个用AGL生成的矩阵及其转置用两个GNN同时捕获传入和传出的信息:

在这里插入图片描述
然后将计算出来的结果丢进TCN中:
在这里插入图片描述

Scale-Wise Fusion

在这里插入图片描述
作者没有采用直接拼接的方式,平等对待每个尺度的具体表示,忽略了对最终预测结果贡献的差异,因此作者对最后的结果进行了特殊的融合。作者首先对TCN的输出进行拼接然后在尺度维度上进行了池化:
在这里插入图片描述
在这里插入图片描述
然后将其投入到一个精练模块中,实际上是两个全连接层
在这里插入图片描述
α是不同尺度的重要性,最后进行加权聚合:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值