GNN图上的谱方法的一些重要结论及其证明

前言

初稿先记一些重要的基本结论。

  • 因为结论的重要性比较主观,对lemma,theorem,proposition的区分可能比较随意,按笔者兴趣来。
  • 本文默认G为无向图。节点数N,顶点集V,边集E这些常见notation就不必多写了吧。

一、Basic Laplacian

1.1 Laplacian矩阵定义回顾

不加自边(self-edge)增强的时候,L=D-A。

L ( i , j ) = { d e g r e e ( i )  if  i = j − 1  if  ( i , j ) ∈ E 0  otherwise  L(i, j)= \left\{\begin{array}{ll} degree(i) & \text { if } i=j \\ -1 & \text { if }(i, j) \in E \\ 0 & \text { otherwise } \end{array}\right. L(i,j)=degree(i)10 if i=j if (i,j)E otherwise 
其中degree(i)表示结点i的度数。

如果对其normalize,
得到 L n o r m = D − 1 2 L D − 1 2 L^{norm}=D^{-\frac{1}{2}}LD^{-\frac{1}{2}} Lnorm=D21LD21
L n o r m ( i , j ) = { 1  if  i = j  and  d j ≠ 0 − 1 d i d j  if  ( i , j ) ∈ E 0  otherwise  L^{norm}(i, j)= \left \{ \begin{array}{ll} 1 & \text { if } i=j \text{ and } d_{j} \ne 0\\ -\frac{1}{\sqrt{d_{i}d_{j}}} & \text { if }(i, j) \in E \\ 0 & \text { otherwise } \end{array} \right. Lnorm(i,j)=1didj 10 if i=j and dj=0 if (i,j)E otherwise 

注意到继续扩展,可以写成如下形式
L n o r m = D − 1 2 L D − 1 2 = D − 1 2 ( D − A ) D − 1 2 = I n − D − 1 2 A D − 1 2 L^{norm}=D^{-\frac{1}{2}}LD^{-\frac{1}{2}}=D^{-\frac{1}{2}}(D-A)D^{-\frac{1}{2}}\\=I_n-D^{-\frac{1}{2}}AD^{-\frac{1}{2}} Lnorm=D21LD21=D21(DA)D21=InD21AD21

1.2 左乘L的效果与L的半正定性质

Proposition 1.2.1

向量左乘Laplacian矩阵后的第 i i i个分量等价于每个与 i i i相连的 j j j对应的分量作减法 v ( i ) − v ( j ) v(i)-v(j) v(i)v(j)后求和

上面这个说法太抽象了,建议直接看证明。

证明:

v ∈ R N v \in \mathbb{R}^N vRN, L ∈ R N × N L \in \mathbb{R}^{N\times N} LRN×N
w = L v w=Lv w=Lv w ∈ R N w \in \mathbb{R}^{N} wRN
w w w在第i个坐标上的分量 w ( i ) w(i) w(i)满足
w ( i ) = d e g r e e ( i ) v ( i ) − ∑ j : ( i , j ) ∈ E v ( j ) = ∑ j : ( i , j ) ∈ E v ( i ) − ∑ j : ( i , j ) ∈ E v ( j ) = ∑ j : ( i , j ) ∈ E ( v ( i ) − v ( j ) ) w(i) = degree(i)v(i)-\sum_{j:(i, j) \in E} v(j) \\ =\sum_{j:(i, j) \in E}v(i)- \sum_{j:(i, j) \in E}v(j) \\ =\sum_{j:(i, j) \in E}(v(i)-v(j)) w(i)=degree(i)v(i)j:(i,j)Ev(j)=j:(i,j)Ev(i)j:(i,j)Ev(j)=j:(i,j)E(v(i)v(j))

直观感受就是,对每一个与i相邻的结点j,取v(i)与v(j)做减法,最后加总。

有了上述命题,我们可以进一步地观察标量 v T L v v^TLv vTLv

Proposition 1.2.2

L是半正定矩阵。

证明:

v T L v = v T w = ∑ i v ( i ) w ( i ) = ∑ i [ v ( i ) ∑ j : ( i , j ) ∈ E ( v ( i ) − v ( j ) ) ] = ∑ i ∑ j : ( i , j ) ∈ E v ( i ) ( v ( i ) − v ( j ) ) = ∑ ( i , j ) ∈ E v ( i ) ( v ( i ) − v ( j ) ) ( 神 奇 的 变 形 , 怎 么 想 到 的 ) = ∑ i < j : ( i , j ) ∈ E v ( i ) ( v ( i ) − v ( j ) ) + v ( j ) ( v ( j ) − v ( i ) ) = ∑ i < j : ( i , j ) ∈ E ( v ( i ) − v ( j ) ) 2 \begin{aligned} v^{T} L v &= v^{T}w \\ &=\sum_{i} v(i)w(i) \\ &=\sum_{i} [v(i) \sum_{j:(i, j) \in E}(v(i)-v(j))] \\ &=\sum_{i} \sum_{j:(i, j) \in E}v(i)(v(i)-v(j)) \\ &=\sum_{(i, j) \in E} v(i)(v(i)-v(j)) \\ & (神奇的变形,怎么想到的)\\ &=\sum_{i<j:(i, j) \in E} v(i)(v(i)-v(j))+v(j)(v(j)-v(i)) \\ &=\sum_{i<j:(i, j) \in E}(v(i)-v(j))^{2} \end{aligned} vTLv=vTw=iv(i)w(i)=i[v(i)j:(i,j)E(v(i)v(j))]=ij:(i,j)Ev(i)(v(i)v(j))=(i,j)Ev(i)(v(i)v(j))()=i<j:(i,j)Ev(i)(v(i)v(j))+v(j)(v(j)v(i))=i<j:(i,j)E(v(i)v(j))2

对每个结点i,找标号大于它的有连边的结点j,取v的i,j两个分量作差后求平方和,再加总。

从上式最后的平方和可以看到,对任意 v v v v T L v ≥ 0 v^TLv \ge 0 vTLv0
所以L矩阵是半正定的。之后就能推所有特征值 λ ≥ 0 \lambda \ge 0 λ0。 (后面可以进一步证明特征值上确界为2)

PS:上述证明中隐含了一个额外的结论。

任意向量取 v T L v v^{T} L v vTLv等价于求 ∑ i , j ∈ E ( v ( i ) − v ( j ) ) 2 \sum_{i,j \in E} (v(i)-v(j))^{2} i,jE(v(i)v(j))2

上述结论可以扩展到矩阵形式。

任意矩阵 Z ∈ R n × n Z \in R^{n\times n} ZRn×n
设其 i i i行为 Z i ∈ R 1 × n Z_i \in R^{1\times n} ZiR1×n j j j列为 z j ∈ R n × 1 z_j \in R^{n\times 1} zjRn×1
t r ( Z T L Z ) tr(Z^TLZ) tr(ZTLZ)
= ∑ i , j ∈ E ∣ ∣ Z i − Z j ∣ ∣ 2 =\sum_{i,j \in E} ||Z_{i}-Z_{j}||^2 =i,jEZiZj2
= ∑ i , j ∈ E ∣ ∣ z i − z j ∣ ∣ 2 =\sum_{i,j \in E} ||z_{i}-z_{j}||^2 =i,jEzizj2

1.3 L的固有特征值0

Theorem 1.3.1
L具备固有特征值0与对应的固有特征向量

证明:
构造 v ∈ R N v\in \mathbb{R}^N vRN, v = ( 1 N , 1 N , . . . , 1 N ) v=(\frac{1}{\sqrt{N}},\frac{1}{\sqrt{N}},...,\frac{1}{\sqrt{N}}) v=(N 1,N 1,...,N 1)
显然 ∣ ∣ v ∣ ∣ = 1 ||v||=1 v=1
根据命题1.2.1
w = L v w=Lv w=Lv,而 w ( i ) = ∑ j : ( i , j ) ∈ E ( v ( i ) − v ( j ) ) w(i)=\sum_{j:(i, j) \in E}(v(i)-v(j)) w(i)=j:(i,j)E(v(i)v(j))
由于v在每个坐标上分量都一致, v ( i ) − v ( j ) ≡ 0 v(i)-v(j) \equiv 0 v(i)v(j)0
进而 w ( i ) ≡ 0 w(i)\equiv 0 w(i)0,
w = 0 w=\mathbf{0} w=0为零向量。
于是 w = L v = 0 = 0 ⋅ v w=Lv= \mathbf{0} = 0\cdot v w=Lv=0=0v
因此,0是L的特征值,
v = ( 1 N , 1 N , . . . , 1 N ) v=(\frac{1}{\sqrt{N}},\frac{1}{\sqrt{N}},...,\frac{1}{\sqrt{N}}) v=(N 1,N 1,...,N 1)是特征值0对应的特征向量。
别忘了这个v的模长还是1。
证毕。

1.4 L的特征值0的重数

Theorem 1.4.1

L的特征值0的重数(multiplicity of the zero eigenvalue)恰等于图G上连通子图的个数(the number of connected components of the graph G)。

证明:

不妨设图G有K个连通子图,
于是可以将顶点集V拆分成K个子集 V 1 , V 2 , . . . , V K V_1,V_2,...,V_K V1,V2,...,VK,
同理将边集E也拆成 E 1 , E 2 , . . . , E K E_1,E_2,...,E_K E1,E2,...,EK,
我们以 ∣ V i ∣ |V_i| Vi表示第i个子集 V i V_i Vi中的结点数量。
对每个子集 V i V_i Vi,构造向量 v i v_i vi,使之满足 v i ( j ) = 1 ∣ V i ∣  if  ( i , j ) ∈ E i  else  0 v_i(j)=\frac{1}{\sqrt{|V_i|}} \text{ if } (i,j) \in E_i \text{ else } 0 vi(j)=Vi 1 if (i,j)Ei else 0
即将有连边的那些j对应的分量填上数值,其他分量置0。
( . . . , 1 ∣ V i ∣ , . . . , 1 ∣ V i ∣ , . . . , 0 , . . . ) (...,\frac{1}{\sqrt{|V_i|}},...,\frac{1}{\sqrt{|V_i|}},...,0,...) (...,Vi 1,...,Vi 1,...,0,...)
显然 ∣ ∣ v i ∣ ∣ = 1 ||v_i||=1 vi=1
于是活用命题1.2.1 【 w ( i ) = ∑ j : ( i , j ) ∈ E ( v ( i ) − v ( j ) ) w(i) =\sum_{j:(i, j) \in E}(v(i)-v(j)) w(i)=j:(i,j)E(v(i)v(j))
由于我们构造的 v i v_i vi满足每个相连的 i , j i,j i,j v ( i ) − v ( j ) = 0 v(i)-v(j)=0 v(i)v(j)=0
因此左乘L后每个分量都是0。
因此 L v i = 0 = 0 v i Lv_i= \mathbf{0} = 0v_i Lvi=0=0vi
因此 v i v_i vi是L对应特征值0的特征向量。
又,对于 i ≠ j i \ne j i=j,由于子集 V i , V j V_i,V_j Vi,Vj是互斥的,必有 < v i , v j > = 0 <v_i,v_j>=0 <vi,vj>=0
可知我们构造的 v 1 , v 2 , . . . , v K v_1,v_2,...,v_K v1,v2,...,vK两两正交,且模长均为1。
这就是一组很好的标准正交基了。
所以L对应特征值0的特征空间至少有K维,即特征值0的重数至少是K。

休息一下

下面来证明,重数的上界也是K。
即证明,不可能找到第 K + 1 K+1 K+1 v K + 1 v_{K+1} vK+1
我们知道,特征值0对应的特征向量 v v v必然要满足 L v = 0 Lv= \mathbf{0} Lv=0
由命题1.2.1 【 w ( i ) = ∑ j : ( i , j ) ∈ E ( v ( i ) − v ( j ) ) w(i) =\sum_{j:(i, j) \in E}(v(i)-v(j)) w(i)=j:(i,j)E(v(i)v(j))】,
可知 v v v必须满足:
if  ( i , j ) ∈ E ,  then  v ( i ) = v ( j ) = a ,  or  v ( i ) = v ( j ) = 0 \text{if } (i,j) \in E, \text{ then } v(i)=v(j)=a, \text{ or } v(i)=v(j)=0 if (i,j)E, then v(i)=v(j)=a, or v(i)=v(j)=0 ( a ≠ 0 ) (a \ne 0) (a=0)
而所有可能的坐标对 ( i , j ) (i,j) (i,j)都已经被拆到 E 1 , . . . , E K E_1,...,E_K E1,...,EK上去了。
不妨这样想象,一开始 v v v是全部坐标分量为0的。
我们一旦从边集 E E E中提取任意的 ( i , j ) (i,j) (i,j),将 v v v的这两个坐标上的分量置为非零值 a a a
由于这对 ( i , j ) (i,j) (i,j)必然存在于某个子边集 E p E_p Ep中,
因此必存在一个刚才构造出来的向量 v p v_p vp满足:
v p ( i ) = v p ( j ) = 1 ∣ V p ∣ ≠ 0 v_p(i)=v_p(j)=\frac{1}{\sqrt{|V_p|}} \ne0 vp(i)=vp(j)=Vp 1=0
因此 < v , v p > ≠ 0 <v,v_p> \ne 0 <v,vp>=0,即 v v v必然不能与 v p v_p vp正交。
因此无论怎么取 ( i , j ) (i,j) (i,j)都找不到一个与 v 1 , v 2 , . . . , v K v_1,v_2,...,v_K v1,v2,...,vK全部正交的 v v v
即找不到第 K + 1 K+1 K+1 v K + 1 v_{K+1} vK+1
因此特征值0的重数上界也是K。

综上

L的特征值0的重数恰为连通子图的数量K。
证毕。

PS:

上文只证明了unnormalized L的特征值0重数为K。
关于normalized L,
或者加了自边的augmented normalized L,
其特征值0的重数也是K。
留给读者自证。(因为我不会)

1.5 L的最大与最小特征值

本节仅提供分析。

根据定理1.2.2的证明过程,有
v T L v = ∑ i < j : ( i , j ) ∈ E ( v ( i ) − v ( j ) ) 2 v^{T} L v = \sum_{i<j:(i, j) \in E}(v(i)-v(j))^{2} vTLv=i<j:(i,j)E(v(i)v(j))2
特别地,当v为L的特征向量时
v T L v = v T λ v = λ ∣ ∣ v ∣ ∣ 2 = ∑ i < j : ( i , j ) ∈ E ( v ( i ) − v ( j ) ) 2 v^{T} L v =v^{T} \lambda v = \lambda ||v||^2 = \sum_{i<j:(i, j) \in E}(v(i)-v(j))^{2} vTLv=vTλv=λv2=i<j:(i,j)E(v(i)v(j))2
现在我们仅考虑所有特征向量中,模长为1的那些单位特征向量。
即加上约束 ∣ ∣ v ∣ ∣ = 1 ||v||=1 v=1
得到 λ ∣ ∣ v ∣ ∣ 2 = λ = ∑ i < j : ( i , j ) ∈ E ( v ( i ) − v ( j ) ) 2 \lambda ||v||^2= \lambda = \sum_{i<j:(i, j) \in E}(v(i)-v(j))^{2} λv2=λ=i<j:(i,j)E(v(i)v(j))2
等式右侧的连加表达式可以大致理解为“方差”的变种,衡量了这个特征向量 v v v在每个分量上的值“差异”有多大。
所以我们可以说,越小的特征值 λ \lambda λ对应的特征向量,其在每个分量上的“差异”越小。
这对应了定理1.3.1,最小的特征值 λ = 0 \lambda=0 λ=0对应的特征向量在每个分量上完全相等。
所以我们可以想象,次小的特征值对应的特征向量应该是不同分量上的差异第二小的。第三小的特征值对应的特征向量在不同分量上的差异是第三小的。
类似的,最大的 λ \lambda λ对应的特征向量 v v v,就是在不同分量上的差异最大的。

1.6 L n o r m L^{norm} Lnorm的特征值范围

这一节快点过,跟前面很类似。
1.6.1

L n o r m L^{norm} Lnorm也满足半正定性,即特征值非负。

证明

x T L n o r m x = x T ( I − D − 1 2 A D − 1 2 ) x = ∑ i ∈ V x ( i ) 2 − ∑ ( i , j ) ∈ E 2 x ( i ) x ( j ) d ( i ) d ( j ) = ∑ ( i , j ) ∈ E ( x ( i ) d ( i ) − x ( j ) d ( j ) ) 2 ≥ 0. \begin{aligned} x^{T} L^{norm} x &=x^{T}(I-D^{-\frac{1}{2}}AD^{-\frac{1}{2}}) x \\ &=\sum_{i \in V} x(i)^{2}-\sum_{(i, j) \in E} \frac{2 x(i) x(j)}{\sqrt{d(i) d(j)}} \\ &=\sum_{(i, j) \in E}\left(\frac{x(i)}{\sqrt{d(i)}}-\frac{x(j)}{\sqrt{d(j)}}\right)^{2} \\ & \geq 0 . \end{aligned} xTLnormx=xT(ID21AD21)x=iVx(i)2(i,j)Ed(i)d(j) 2x(i)x(j)=(i,j)E(d(i) x(i)d(j) x(j))20.
这个证明的第二步可能不是很显然。

1.6.2

L n o r m L^{norm} Lnorm也具备固有特征值0,对应0特征值的特征向量 D 1 2 v D^{\frac{1}{2}}v D21v,其中 v v v L L L对应特征值0的特征向量, v = ( 1 N , 1 N , . . . , 1 N ) v=(\frac{1}{\sqrt{N}},\frac{1}{\sqrt{N}},...,\frac{1}{\sqrt{N}}) v=(N 1,N 1,...,N 1)
于是有 λ m i n = 0 \lambda_{min}=0 λmin=0

1.6.3

L n o r m L^{norm} Lnorm λ m a x ≤ 2 \lambda_{max} \le 2 λmax2

证明

先考虑一个lemma,即 I n + D − 1 2 A D − 1 2 I_n+D^{-\frac{1}{2}}AD^{-\frac{1}{2}} In+D21AD21同样具有半正定性质。
x T ( I + D − 1 2 A D − 1 2 ) x = ∑ i ∈ V x ( i ) 2 + ∑ ( i , j ) ∈ E 2 x ( i ) x ( j ) d ( i ) d ( j ) = ∑ ( i , j ) ∈ E ( x ( i ) d ( i ) + x ( j ) d ( j ) ) 2 ≥ 0 x^{T}(I+D^{-\frac{1}{2}}AD^{-\frac{1}{2}}) x=\sum_{i \in V} x(i)^{2}+\sum_{(i, j) \in E} \frac{2 x(i) x(j)}{\sqrt{d(i) d(j)}}=\sum_{(i, j) \in E}\left(\frac{x(i)}{\sqrt{d(i)}}+\frac{x(j)}{\sqrt{d(j)}}\right)^{2} \geq 0 xT(I+D21AD21)x=iVx(i)2+(i,j)Ed(i)d(j) 2x(i)x(j)=(i,j)E(d(i) x(i)+d(j) x(j))20
于是
x T ( I + D − 1 2 A D − 1 2 ) x = x T x + x T D − 1 2 A D − 1 2 x ≥ 0 x^{T}(I+D^{-\frac{1}{2}}AD^{-\frac{1}{2}}) x \\ =x^Tx+x^TD^{-\frac{1}{2}}AD^{-\frac{1}{2}}x \ge 0 xT(I+D21AD21)x=xTx+xTD21AD21x0
于是
− x T D − 1 2 A D − 1 2 x ≤ x T x -x^TD^{-\frac{1}{2}}AD^{-\frac{1}{2}}x \le x^Tx xTD21AD21xxTx
x T x − x T D − 1 2 A D − 1 2 x ≤ 2 x T x x^Tx-x^TD^{-\frac{1}{2}}AD^{-\frac{1}{2}}x \le 2x^Tx xTxxTD21AD21x2xTx
x T ( I n − D − 1 2 A D − 1 2 ) x ≤ 2 x T x x^T(I_n-D^{-\frac{1}{2}}AD^{-\frac{1}{2}} )x \le 2x^Tx xT(InD21AD21)x2xTx
x为非零向量时成立
x T ( I n − D − 1 2 A D − 1 2 ) x x T x ≤ 2 \frac{x^T(I_n-D^{-\frac{1}{2}}AD^{-\frac{1}{2}} )x }{x^Tx} \le 2 xTxxT(InD21AD21)x2

x T L n o r m x x T x ≤ 2 \frac{x^T L^{norm} x }{x^Tx} \le 2 xTxxTLnormx2
运用Rayleigh quotient的结论就能得到,
L n r o m L^{nrom} Lnrom的最大特征值 λ m a x ≤ 2 \lambda_{max}\le 2 λmax2
当且仅当原始图是二分图时,等号成立。
可以参考笔记《Rayleigh-Ritz theorem》

综合上面可以知道

L n o r m L^{norm} Lnorm的特征值范围是[0,2]。当且仅当是二分图时, λ max ⁡ = 2 \lambda_{\max}=2 λmax=2成立。

2.Augmented Normalized Laplacian

2.1 定义

所谓augmented,就是对邻接矩阵加自边(self-edge or self-loop)。
A ~ = A + I n \tilde{A} = A+I_n A~=A+In
于是度数矩阵也相应变化(每个结点增加1)
D ~ = D + I n \tilde{D} = D+I_n D~=D+In
于是augmented normalized Laplacian
Δ ~ s y m = I n − D ~ − 1 2 A ~ D ~ − 1 2 \tilde{\Delta}_{sym}=I_n - \tilde{D}^{-\frac{1}{2}} \tilde{A} \tilde{D}^{-\frac{1}{2}} Δ~sym=InD~21A~D~21

为了简洁起见,若非必要,本文后面省略脚标 s y m sym sym

上式可以进一步拆解为
Δ ~ s y m = D ~ − 1 2 ( D ~ − A ~ ) D ~ − 1 2 = D ~ − 1 2 ( D − A ) D ~ − 1 2 = D ~ − 1 2 L D ~ − 1 2 \tilde{\Delta}_{sym}= \tilde{D}^{-\frac{1}{2}} ( \tilde{D} - \tilde{A} ) \tilde{D}^{-\frac{1}{2}} =\tilde{D}^{-\frac{1}{2}} ( D-A) \tilde{D}^{-\frac{1}{2}} =\tilde{D}^{-\frac{1}{2}} L \tilde{D}^{-\frac{1}{2}} Δ~sym=D~21(D~A~D~21=D~21(DAD~21=D~21LD~21
所以你会发现 Δ ~ s y m \tilde{\Delta}_{sym} Δ~sym L n o r m = D − 1 2 L D − 1 2 L^{norm}=D^{-\frac{1}{2}}LD^{-\frac{1}{2}} Lnorm=D21LD21相比,区别只是换了个更大的分母来归一。

Δ ~ s y m ( i , j ) = { d i d i + 1  if  i = j  and  d j ≠ 0 − 1 ( d i + 1 ) ( d j + 1 )  if  ( i , j ) ∈ E 0  otherwise  \tilde{\Delta}_{sym}(i, j)= \left \{ \begin{array}{ll} \frac{d_{i}}{d_i+1} & \text { if } i=j \text{ and } d_{j} \ne 0\\ -\frac{1}{\sqrt{ (d_{i}+1)(d_{j}+1)}} & \text { if }(i, j) \in E \\ 0 & \text { otherwise } \end{array} \right. Δ~sym(i,j)=di+1di(di+1)(dj+1) 10 if i=j and dj=0 if (i,j)E otherwise 

2.2 Δ ~ \tilde{\Delta} Δ~的半正定性

Theorem 2.2.1
Δ ~ \tilde{\Delta} Δ~半正定。

证明:

约定 a ~ i j \tilde{a}_{ij} a~ij表示 A ~ \tilde{A} A~的i行j列元素。
x = ( x 1 , x 2 , . . . , x N ) ∈ R N , x i x=(x_1,x_2,...,x_N) \in \mathbb{R}^N ,x_i x=(x1,x2,...,xN)RN,xi表示x的第i个分量。
d i = d e g r e e ( i ) d_i = degree(i) di=degree(i),
加上自边后每个结点度数加1,所以 d ~ i = d i + 1 \tilde{d}_i=d_i+1 d~i=di+1

于是有

x T Δ ~ s y m x = ∑ i x i 2 − ∑ i ∑ j a ~ i j ( d i + 1 ) ( d j + 1 ) x i x j = 1 2 ( ∑ i x i 2 + ∑ j x j 2 − ∑ i ∑ j 2 a ~ i j x i x j ( d i + 1 ) ( d j + 1 ) ) = 1 2 ( ∑ i ∑ j a ~ i j x i 2 d i + 1 + ∑ j ∑ i a ~ i j x j 2 d j + 1 − ∑ i ∑ j 2 a ~ i j x i x j ( d i + 1 ) ( d j + 1 ) ) = 1 2 ∑ i ∑ j a ~ i j ( x i d i + 1 − x j d j + 1 ) 2 ≥ 0 \begin{array}{l} x^{T} \tilde{\Delta}_{\mathrm{sym}} x=\sum_{i} x_{i}^{2}-\sum_{i} \sum_{j} \frac{\tilde{a}_{i j} } {\sqrt{\left(d_{i}+1 \right)\left(d_{j}+1 \right)}} x_{i} x_{j} \\ =\frac{1}{2}\left(\sum_{i} x_{i}^{2}+\sum_{j} x_{j}^{2}-\sum_{i} \sum_{j} \frac{2 \tilde{a}_{i j} x_{i} x_{j}}{\left.\sqrt{\left(d_{i}+1\right)\left(d_{j}+1 \right)}\right.} \right) \\ =\frac{1}{2}\left(\sum_{i} \sum_{j} \frac{\tilde{a}_{i j} x_{i}^{2}}{d_{i}+1}+\sum_{j} \sum_{i} \frac{\tilde{a}_{i j} x_{j}^{2}}{d_{j}+1}\right. \\ \left.\quad-\sum_{i} \sum_{j} \frac{2 \tilde{a}_{i j} x_{i} x_{j}}{\sqrt{\left(d_{i}+1\right)\left(d_{j}+1\right)}}\right) \\ =\frac{1}{2} \sum_{i} \sum_{j} \tilde{a}_{i j}\left(\frac{x_{i}}{\sqrt{d_{i}+1}}-\frac{x_{j}}{\sqrt{d_{j}+1}}\right)^{2} \geq 0 \end{array} xTΔ~symx=ixi2ij(di+1)(dj+1) a~ijxixj=21(ixi2+jxj2ij(di+1)(dj+1) 2a~ijxixj)=21(ijdi+1a~ijxi2+jidj+1a~ijxj2ij(di+1)(dj+1) 2a~ijxixj)=21ija~ij(di+1 xidj+1 xj)20
证毕。

2.3 Δ ~ \tilde{\Delta} Δ~的固有特征值与特征向量

Theorem 2.3.1
Δ ~ \tilde{\Delta} Δ~具备固有特征值0与对应特征向量

证明:

在Section1已经证明了 v = ( 1 , 1 , . . . , 1 ) T v=(1,1,...,1)^T v=(1,1,...,1)T Δ \Delta Δ对应特征值0的特征向量。(每个分量上完全相等)
Δ v = 0 ⋅ v = 0 \Delta v= 0\cdot v=\mathbf{0} Δv=0v=0

v ~ = D ~ 1 2 v \tilde{v} = \tilde{D}^{\frac{1}{2}}v v~=D~21v
则有

D ~ v ~ = [ I n − D ~ − 1 2 A ~ D ~ − 1 2 ] D ~ 1 2 v = [ D ~ − 1 2 ( D ~ − A ~ ) D ~ − 1 2 ] D ~ 1 2 v = D ~ − 1 2 Δ v = D ~ − 1 2 0 ⋅ v = 0 = 0 ⋅ v ~ \tilde{D}\tilde{v} = [I_n -\tilde{D}^{-\frac{1}{2}} \tilde{A} \tilde{D}^{-\frac{1}{2}}]\tilde{D}^{\frac{1}{2}}v\\ =[\tilde{D}^{-\frac{1}{2}} (\tilde{D}-\tilde{A} ) \tilde{D}^{-\frac{1}{2}}]\tilde{D}^{\frac{1}{2}}v \\ =\tilde{D}^{-\frac{1}{2}}\Delta v =\tilde{D}^{-\frac{1}{2}} 0\cdot v =\mathbf{0} \\ =0\cdot\tilde{v} D~v~=[InD~21A~D~21]D~21v=[D~21D~A~)D~21]D~21v=D~21Δv=D~210v=0=0v~
因此0是固有特征值,且 v ~ = D ~ 1 2 v \tilde{v} = \tilde{D}^{\frac{1}{2}}v v~=D~21v是对应特征值0的特征向量。

2.4 Δ ~ \tilde{\Delta} Δ~的最大特征值上界

Δ \Delta Δ特征值的升序排列记为 λ 1 , λ 2 , . . . , λ N \lambda_1,\lambda_2,...,\lambda_N λ1,λ2,...,λN
Δ ~ \tilde{\Delta} Δ~特征值的升序排列记为 λ ~ 1 , λ ~ 2 , . . . , λ ~ N \tilde{\lambda}_1,\tilde{\lambda}_2,...,\tilde{\lambda}_N λ~1,λ~2,...,λ~N

Theorem 2.4.1
Δ ~ \tilde{\Delta} Δ~的最大特征值严格小于 Δ \Delta Δ的最大特征值,即 λ ~ N < λ N \tilde{\lambda}_N<\lambda_N λ~N<λN

证明:
v ~ \tilde{v} v~ Δ ~ \tilde{\Delta} Δ~的特征向量,且满足 ∣ ∣ v ~ ∣ ∣ = 1 ||\tilde{v}||=1 v~=1
v ~ T Δ ~ v ~ = λ ~ ∣ ∣ v ~ ∣ ∣ 2 = λ ~ \tilde{v}^T\tilde{\Delta}\tilde{v}=\tilde{\lambda}||\tilde{v}||^2=\tilde{\lambda} v~TΔ~v~=λ~v~2=λ~

所以最大特征值就是对上式求max。

λ ~ N = max ⁡ ∣ ∣ v ~ ∣ ∣ = 1 v ~ T Δ ~ v ~ = max ⁡ ∣ ∣ v ~ ∣ ∣ = 1 v ~ T ( I n − D ~ − 1 2 A ~ D ~ − 1 2 ) v ~ = max ⁡ ∣ ∣ v ~ ∣ ∣ = 1 v ~ T [ I n − D ~ − 1 2 ( I n + A ) D ~ − 1 2 ] v ~ = max ⁡ ∣ ∣ v ~ ∣ ∣ = 1 { ∣ ∣ v ~ ∣ ∣ 2 − v ~ T D ~ − 1 v ~ − v ~ T D ~ − 1 2 A D ~ − 1 2 v ~ } = 1 − min ⁡ ∣ ∣ v ~ ∣ ∣ = 1 { v ~ T D ~ − 1 v ~ + v ~ T D ~ − 1 2 A D ~ − 1 2 v ~ } = 1 − min ⁡ ∣ ∣ v ~ ∣ ∣ = 1 { ∑ i v ~ ( i ) 2 1 + d i + v ~ T D ~ − 1 2 A D ~ − 1 2 v ~ } \tilde{\lambda}_N=\max_{||\tilde{v}||=1}\tilde{v}^T\tilde{\Delta}\tilde{v} \\ =\max_{||\tilde{v}||=1}\tilde{v}^T(I_n -\tilde{D}^{-\frac{1}{2}} \tilde{A} \tilde{D}^{-\frac{1}{2}})\tilde{v} \\ =\max_{||\tilde{v}||=1}\tilde{v}^T[I_n -\tilde{D}^{-\frac{1}{2}} (I_{n}+A) \tilde{D}^{-\frac{1}{2}}] \tilde{v}\\ =\max_{||\tilde{v}||=1} \{ ||\tilde{v}||^2-\tilde{v}^{T}\tilde{D}^{-1}\tilde{v} - \tilde{v}^T \tilde{D}^{-\frac{1}{2}}A\tilde{D}^{-\frac{1}{2}} \tilde{v} \} \\ =1-\min_{||\tilde{v}||=1}\{ \tilde{v}^{T}\tilde{D}^{-1}\tilde{v} + \tilde{v}^T \tilde{D}^{-\frac{1}{2}}A\tilde{D}^{-\frac{1}{2}} \tilde{v} \} \\ =1-\min_{||\tilde{v}||=1}\{ \sum_{i}\frac{\tilde{v}(i)^2}{1+d_{i}}+ \tilde{v}^T \tilde{D}^{-\frac{1}{2}}A\tilde{D}^{-\frac{1}{2}} \tilde{v} \} λ~N=maxv~=1v~TΔ~v~=maxv~=1v~T(InD~21A~D~21)v~=maxv~=1v~T[InD~21(In+A)D~21]v~=maxv~=1{v~2v~TD~1v~v~TD~21AD~21v~}=1minv~=1{v~TD~1v~+v~TD~21AD~21v~}=1minv~=1{i1+div~(i)2+v~TD~21AD~21v~}

min括号中第一项显然是正数,可以放缩掉。
λ ~ N < 1 − min ⁡ ∣ ∣ v ~ ∣ ∣ = 1 v ~ T D ~ − 1 2 A D ~ − 1 2 v ~ = max ⁡ ∣ ∣ v ~ ∣ ∣ = 1 v ~ T ( I n − D ~ − 1 2 A D ~ − 1 2 ) v ~ \tilde{\lambda}_N<1-\min_{||\tilde{v}||=1}\tilde{v}^T \tilde{D}^{-\frac{1}{2}}A\tilde{D}^{-\frac{1}{2}} \tilde{v}\\ =\max_{||\tilde{v}||=1} \tilde{v}^T(I_n-\tilde{D}^{-\frac{1}{2}}A\tilde{D}^{-\frac{1}{2}} )\tilde{v} λ~N<1minv~=1v~TD~21AD~21v~=maxv~=1v~T(InD~21AD~21)v~

在这里插入图片描述

也可以参考https://arxiv.org/pdf/1905.10947.pdf 附录B。

待补充。

λ m a x = 2 \lambda_{max}=2 λmax=2

证明:
考虑基本不等式 ( a − b ) 2 ≤ 2 ( a 2 + b 2 ) (a-b)^2\le 2(a^2+b^2) (ab)22(a2+b2)

https://link.springer.com/content/pdf/10.1007/s40304-020-00222-7.pdf
最大特征值起码 n+1/n-1

References

CS168-Lecture11 ,Spectral Graph Theory, https://web.stanford.edu/class/cs168/index.html

Chung & Graham (1997),Spectral Graph Theory

Felix Wu, Tianyi Zhang, Amauri Holanda de Souza Jr, Christopher Fifty, Tao Yu, and Kilian Q
Weinberger. Simplifying graph convolutional networks. arXiv preprint. https://arxiv.org/pdf/1902.07153.pdf

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值