(2)svpwm公式推导

设三相3个标量分别为x_{a},x_{b},x_{c},且满足x_{a}+x_{b}+x_{c}=0,可引入变换

X_{out}=x_{a}+ax_{b}+bx_{c}                 (1)

其中a=e^{j2\pi /3},b=e^{-j2\pi /3},式(1)中将3个标量X_{out}用一个复数表示,复数X_{out}在复平面上为一个向量。由欧拉方程e^{ix}=cosx+isinx

a=e^{j2\pi /3}=cos(2\pi /3)+isin(2\pi/3)              

b=e^{-j2\pi /3}=cos(-2\pi /3)+isin(-2\pi/3)=cos(2\pi /3)-isin(2\pi/3)

a,b带入(1)式得:

X_{out}=x_{a}+x_{b}(cos(2\pi/3)+isin(2\pi/3))+x_{c}(cos(2\pi/3)-isin(2\pi/3)) 

X_{out}=x_{a}+x_{b}cos(2\pi/3)+x_{c}cos(2\pi/3) +i(x_{b}sin(2\pi/3))-x_{c}sin(2\pi/3))        (2)

如下图所示,实部和虚部分别表示为

ReX_{out}=x_{a}+x_{b}cos(2\pi/3)+x_{c}cos(2\pi/3)            (3)

ImX_{out}=x_{b}sin(2\pi/3))-x_{c}sin(2\pi/3)                  (4)

 

                                                     

将(3)(4)式与x_{a}+x_{b}+x_{c}=0并联得

\begin{bmatrix} ReX_{out}\\ LmX_{out}\\ 0 \end{bmatrix}=\begin{bmatrix} 1 &-1/2 & -1/2\\ 0& \sqrt{3}/2 &-\sqrt{3}/2 \\ 1/2& 1/2& 1/2 \end{bmatrix}\begin{bmatrix} x_{a}\\ x_{b}\\ x_{c} \end{bmatrix}

如果复数X_{out}已知,则可以求出唯一x_{a},x_{b},x_{c},即

\begin{bmatrix} x_{a}\\ x_{b}\\ x_{c} \end{bmatrix}=\begin{bmatrix} 1 &0 & 1\\ -1/2& \sqrt{3}/2 &1 \\ -1/2& -\sqrt{3}/2& 1 \end{bmatrix}\begin{bmatrix} ReX_{out}\\ LmX_{out}\\ 0 \end{bmatrix}

这样,就将3个标量x_{a},x_{b},x_{c}使用一个复数X_{out}表示

假设三相正弦对称电压瞬间值表示为

\left\{\begin{matrix} u_{a}=U_{m}cos(wt)\\ u_{b}=U_{m}cos(wt-2\pi/3)\\ u_{c}=U_{m}cos(wt+2\pi/3) \end{matrix}\right.

其中U_{m}为相电压的幅值,w为角频率,三相相电压u_{a},u_{b},u_{c}对应的空间电压矢量为

U_{out}=u_{a}+au_{b}+bu_{c}

根据(3)(4)求得电压矢量U_{out}的实部和虚部分别为

ReU_{out}=u_{a}+u_{b}cos(2\pi/3)+u_{c}cos(2\pi/3)     (5)

ImU_{out}=u_{b}sin(2\pi/3))-u_{c}sin(2\pi/3)              (6)

由三角函数中二角和差公式

cos(\alpha +\beta )=cos(\alpha)cos(\beta )-sin(\alpha)sin(\beta )

cos(\alpha -\beta )=cos(\alpha)cos(\beta )+sin(\alpha)sin(\beta )

\left\{\begin{matrix} u_{a}=U_{m}cos(wt)\\ u_{b}=U_{m}cos(wt-2\pi/3)=U_{m}(cos(wt)cos(2\pi/3)+sin(wt)sin(2\pi/3))\\ u_{c}=U_{m}cos(wt+2\pi/3)=U_{m}(cos(wt)cos(2\pi/3)-sin(wt)sin(2\pi/3))\end{matrix}\right.

根据(5)(6)得电压矢量U_{out}的实部和虚部为

ReU_{out}=u_{a}-\frac{1}{2}(u_{b}+u_{c})=U_{m}cos(wt)-\frac{1}{2}U_{m}(-cos(wt))=\frac{3}{2}U_{m}cos(wt)

ImU_{out}=u_{b}sin(2\pi/3))-u_{c}sin(2\pi/3)=\frac{\sqrt{3}}{2}(u_{b}-u_{c})

ImU_{out}=\frac{\sqrt{3}}{2}(2U_{m}sin(wt)sin(2\pi/3))=\frac{3}{2}U_{m}sin(wt)

故电压空间矢量U_{out}

U_{out}=ReU_{out}+iLmU_{out}=\frac{3}{2}U_{m}(cos(wt)+isin(wt))=\frac{3}{2}U_{m}e^{iwt}          (7)

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值