reasoning engine in IOT

The Internet-of-Things provides us with lots of sensor data. However, the data by themselves do not provide value unless we can turn them into actionable, contextualized information. Big data and data visualization techniques allow us to gain new insights by batch-processing and off-line analysis. Real-time sensor data analysis and decision-making is often done manually but to make it scalable, it is preferably automated. Artificial Intelligence provides us the framework and tools to go beyond trivial real-time decision and automation use cases for IoT. In this and the next couple of blog posts, i will explain how waylay has developed a platform that uses concepts from artificial intelligence and applied those to the use case of smarter decision making in IoT.


Before we go there, it is important to understand the difference and relationship between big data and real-time reasoning. Take the car as an example. Big data analysis of sensor data retrieved from many cars will provide statistical information on reliability of particular components and suppliers. Decision making will allow deciding whether there is need for maintenance of one particular car, judging the impact of a broken component in that car, etc. Obviously, insights retrieved via big data can be reused and integrated as part of the reasoning process. Let’s now see how waylay uses AI techniques for IoT applications.

The rational agent is a central concept in artificial intelligence. An agent is something that perceives  its environment through sensors and acts upon that environment via actuators. For example, a robot may rely on cameras as sensors and act on its environment via motors.


A rational agent is an agent that does ‘the right thing’. The right thing obviously depends on the performance criterion defined for an agent, but also on an agent’s prior knowledge of the environment, the sequence of observations the agent has made in the past and the choice of actions that an agent can perform.

An agent consists of an architecture and logic. The architecture of an agent  typically consists of a computing device with physical sensors and actuators. The architecture allows to ingest sensor data, run the logic on the data and act upon the outcome. The logic itself is the heart of the agent that computes and reasons based on the available data and its knowledge of the environment.

waylay has developed a cloud-based agent architecture that observes its environment via software-defined sensors and acts on its environment throughsoftware-defined actuators rather than physical devices. The advantages of software-defined sensors and actuators are manifold and will be explained in a future blog post. Suffice it to say here that a software-defined-sensor can correspond not only to a physical sensor but can also represent social media data, location data, generic API information, etc.


At the core of the agent architecture is the logic. waylay has chosen a graph modeling technology, Bayesian networks, as the core logical component. Graph modeling is a powerful technology that provides the flexibility to match the environmental conditions observed in IoT, more on that later.

Finally, waylay exposes the complete agent as a REST service, which means the agent, sensors and actuators can be controlled from the outside, and the intelligent agent can be integrated as part of a bigger solution.

In sum, waylay has developed a solution for real-time decision making in IoT applications. It is based on powerful artificial intelligence technology and its API-driven architecture makes it compatible with modern SaaS development practises.

Credits: The AI concepts explained it this post are based on ‘Artificial Intelligence, A Modern Approach’ by Stuart Russell, Peter Norvig. Images courtesy of dierkschaefer and Kevin Ashton


计算机科学中的逻辑建模和推理是一种使用形式化逻辑来描述和分析计算机系统行为的方法。它广泛应用于软件工程、人工智能、计算机网络等领域。 逻辑建模使用数学符号和公式来描述系统的各个组件之间的关系和交互。这些符号和公式可以表示系统中的变量、约束和操作,并通过逻辑公理和推理规则进行分析。通过将系统抽象为逻辑模型,我们可以理解其行为、检验其性质,甚至验证系统是否满足某些规范。 逻辑推理是从给定的前提出发,应用逻辑规则来推导出结论的过程。在计算机科学中,我们使用严格的数学推理来证明系统的正确性和性能特征。这可以帮助我们发现系统中的错误和潜在问题,并提供修复和优化的指导。 逻辑建模和推理在计算机科学中有许多实际应用。例如,在软件工程中,逻辑建模可以用于描述和验证软件系统的功能和正确性。在人工智能中,逻辑推理可以用于知识表示和推断,帮助机器智能地处理复杂的信息。在计算机网络中,逻辑建模和推理可以用于分析和优化网络协议的性能。 总之,逻辑建模和推理在计算机科学中是一种重要的工具和方法。它提供了一种形式化的方式来描述和分析计算机系统,帮助我们理解系统行为、验证正确性和优化性能。通过逻辑建模和推理,我们可以更好地设计、开发和维护复杂的计算机系统。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值