DeepSeek实用技巧系列-文生图表(四)

DeepSeek+即梦AI-文本生成图片

在创作或者科研中有时需要用到特定的个性化图片,而这些图片是网络上找不到的或者现实中不容易拍摄的,利用DeepSeek辅助图像生成成为很好的选择。

第一步:输入指令“给出生成一张图片的描述:中国男人在麦田里工作。需要给出图像细节描述以及相应的参数。”

第二步:将文字复制到即梦AI,点击立即创作即可生成图片:

### 使用 DeepSeek 和 Dify 实现文本生成 Word 文档 为了实现通过 DeepSeek 和 Dify 生成 Word 文档的功能,可以遵循以下方法: #### 准备工作环境 确保已经安装并配置好 Deepseek-r14b 模型以及 Dify 的开发环境。这通常涉及设置 API 访问权限和必要的依赖库。 #### 创建 Python 脚本以调用模型和服务 编写一段 Python 代码来处理请求、获取响应并将结果保存为 .docx 文件格式。此过程分为几个部分:初始化客户端连接、准备输入数据、发送查询给 AI 模型、接收预测输出最后写入文件系统中形成最终文档。 ```python from docx import Document import requests def generate_word_document(prompt, output_path="output.docx"): # 发送 POST 请求至 Dify 或者直接使用 Deepseek-r14b 进行情境化推理 response = requests.post( "http://localhost:8000/api/generate", json={"prompt": prompt} ) generated_text = response.json()["text"] document = Document() document.add_paragraph(generated_text) document.save(output_path) if __name__ == "__main__": user_input = input("请输入要转换成Word的内容:") file_name = "./generated_output.docx" generate_word_document(user_input, file_name) print(f"已成功创建 {file_name}") ``` 这段脚本展示了如何利用 HTTP 客户端向部署有 Deepseek-r14b 模型的服务端发出请求,并将返回的结果存入一个新的 Microsoft Word (.docx) 文件里[^2]。 #### 配置 Prometheus 监控指标 对于生产环境中运行的应用程序来说,性能监测非常重要。可以通过定义特定的度量标准如 `ollama_api_latency` 来跟踪服务延迟情况;同时记录像 `dify_request_volume`, `cache_hit_rate` 及 `error_types` 等关键业务逻辑相关的统计信息以便后续分析优化。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值