自适应空间特征融合(ASFF)详解

​ ASFF网络引入了自适应结构特征融合模块,用于融合多个不同层次的特征图。传统的目标检测网络通常只使用单一层次的特征图,而ASFF网络通过动态地选择和融合多层特征图,使得网络能够更好地捕捉目标的多尺度信息。

​ ASFF网络首先通过主干网络提取不同层次的特征图。然后,它使用自适应的注意力机制来对这些特征图进行加权融合,以便更好地保留重要的特征信息。最后,融合后的特征被传递给目标检测头部进行目标分类和定位。

​ 相比传统的目标检测方法,ASFF网络在准确性和性能方面都有所提高。它能够更好地捕捉目标的多尺度信息,从而在目标检测任务中取得更好的效果。

​ 特征金字塔的一大缺点是不同尺度特征的不一致性,特别是对于一阶段检测器。确切地说,在FPN形式的网络中启发式地选择特征,高层语义信息中检测大目标、低层语义信息中检测小目标。当某个目标在某一层被当做正类时,相应地该目标区域在其它层被当做负类。如果一幅图像中既有大目标也有小目标,那么不同层间的特征的不一致性将会影响最后检测结果(大目标的检测在某一层,小目标的检测在另一层,但是网络的多尺寸检测不会仅仅检测一个特定的区域,而是综合整幅图进行检测。在特征融合时,其它层很多无用的信息也会融合进来)。

网络结构图
在这里插入图片描述
ASFF的关键思想是自适应地学习每个尺度特征图的融合空间权重,分为两步:恒等缩放和自适应融合。

  • 对于ASFF-1:对level-3的特征图做3x3MaxPool(stride=2)+3x3Conv(stride=2)得到X(3→1),对level-2的特征图做3x3Conv(stride=2)得到 X(2→1).
  • 对于ASFF-2:对level-3的特征图做3x3Conv(stride=2)得到X(3→2). 对level-1的特征图做1x1Conv,并resize到原图分辨率2倍大小得到X(1→2).
  • 对于ASFF-3:对level-2的特征图做1x1Conv,并resize到原图分辨率2倍大小,得到X(2→3).对level-1的特征图做1x1Conv,并resize到原图分辨率4倍大小,得到X(1→3)
    【注意:X(3→1)表示将leve3恒等缩放到ASFF1指定的尺寸,其他同理】

自适应融合
以ASFF-3为例,图中的绿色框描述了如何将特征进行融合,其中X1,X2,X3分别为来自level1,level2,level3的特征,与为来自不同层的特征乘上权重参数α3,β3和γ3并相加,就能得到新的融合特征ASFF-3,如下面公式所示:

以ASFF-3为例,图中的绿色框描述了如何将特征进行融合,其中X1,X2,X3分别为来自level,level2,level3的特征,与为来自不同层的特征乘上权重参数α3,β3和γ3并相加,就能得到新的融合特征ASFF-3,如下面公式所示:
在这里插入图片描述
对于权重参数α,β和γ,则是通过resize后的level1~level3的特征图经过1×1的卷积得到的。并且参数α,β和γ经过concat之后通过softmax使得他们的范围都在[0,1]内并且和为1:

对于权重参数α,β和γ的详细计算过程:
假设我们有 3个不同尺度的特征图(Level1, Level2, Level3),ASFF 的目标是自适应地融合它们,使得不同层的信息能更好地协作。权重α,β,γ决定了每一层的贡献程度。

步骤 1:特征图 Resize到相同尺寸

  • ​ Level1(高层,分辨率低,如 4×4)
  • ​ Level2(中层,分辨率中等,如 8×8)
  • ​ Level3(底层,分辨率高,如 16×16

ASFF 要求所有特征图先调整到相同尺寸(比如都 resize 到 8×8):

  • ​ Level1(4×4)→上采样到 8×8
  • ​ Level3(16×16)→下采样到 8×8

步骤 2:计算权重 α, β, γ​​
对每一层调整后的特征图分别用 ​​1×1 卷积计算一个权重张量​​(大小和特征图一致,比如 8×8)。
然后 ​​concat(拼接)​​这些权重张量,再 ​​softmax归一化,使得 ​​α + β + γ = 1​​(每个位置的值在 [0,1] 之间)。

对于这个1×1的卷积权重:
每一个level都有一个独立的1×1卷积核,即1×1卷积在同一level权重是共享的(即同一层内所有空间位置使用相同的卷积核参数),但不同层级(Level 1/2/3)的 1×1 卷积是独立的。
每个层级的 1×1 卷积是分开训练的,因此不同层级的权重计算方式不同。

具体计算过程

(1) 输入特征图

假设调整后的特征图尺寸均为 H×W×C(如 8×8×256):

  • Level 1: 8×8×256
  • Level 2: 8×8×256
  • Level 3: 8×8×256

(2) 对每一层应用 1×1 卷积

每个层级独立通过 1×1 卷积,输出一个H×W×1 的权重张量:

  • Level 1 → 1×1 Conv → 8×8×1(α_raw)
  • Level 2 → 1×1 Conv → 8×8×1(β_raw)
  • Level 3 → 1×1 Conv → 8×8×1(γ_raw)

也就是每个层级经过1×1的卷积,输出一个二维张量,三个层级输出3个(后续Concat可以认为是将每一个张量当作一个通道进行拼接成一个[3,8,8]的三维张量)

注意:这里的 1×1 卷积是 通道压缩(256→1),但空间维度(H×W)上权重共享。

(3) Concat + Softmax

  • 将三个 8×8×1 的权重张量拼接成 8×8×3

  • 对每个空间位置(共 H×W 个点)的 3 个值(α-raw, β-raw, γ-raw)分别做 softmax:

    • 例如位置(i,j):

      α = exp(α_raw[i,j]) / (exp(α_raw[i,j]) + exp(β_raw[i,j]) + exp(γ_raw[i,j]))
      β = exp(β_raw[i,j]) / (...)
      γ = exp(γ_raw[i,j]) / (...)
      
    • 最终得到 α, β, γ 均为 8×8×1,且满足 每个位置的 α + β + γ = 1

(4) 最终融合特征

  • ASFF 输出 = α × Level1 + β × Level2 + γ × Level3
### ASFF 模块架构设计与结构图 ASFF (Adaptive Spatial Feature Fusion) 是一种用于多尺度特征融合的技术,其核心在于动态调整不同尺度特征的重要性权重。以下是关于 ASFF 模块的设计细节及其架构特点: #### 1. **ASFF 的基本原理** ASFF 主要通过学习每个像素位置上的空间权重视图来实现自适应空间特征融合。它能够根据不同任务的需求自动分配各个输入特征图的贡献比例[^2]。 #### 2. **模块组成** ASFF 模块由以下几个关键部分构成: - **通道数调整**: 首先对来自不同层次的特征图进行通道维度统一处理,通常会将其转换为相同的通道数量以便后续计算。 - **尺度调整操作**: 对低分辨率、语义丰富的深层特征执行上采样操作;而对于高分辨率、语义较弱的浅层特征则可能需要下采样以匹配其他特征图大小。 - **注意力机制融合**: 使用逐元素相加的方式初步完成特征叠加之后,再引入注意力机制进一步优化融合过程中的信息传递效率和质量[^3]。 #### 3. **具体实现流程** 在实际编码过程中,ASF-YOLO 将上述功能封装成独立的功能组件,并嵌入到整个 YOLOv8 网络框架之中作为增强版 neck 层的一部分[^5]: ```python import torch.nn as nn class ASFF(nn.Module): def __init__(self, level=0, multiplier=1): super(ASFF, self).__init__() # 定义一些必要的参数... def forward(self, inputs): """ :param inputs: list of input tensors from different levels. e.g., [P3, P4, P5], where each Pi is a tensor. """ # 实现具体的融合逻辑... return fused_feature_map ``` 这段伪代码展示了如何创建一个基础版本的 `ASFF` 类型对象以及它的前向传播方法概览[^1]。 #### 4. **可视化表示** 虽然没有直接提供一张标准的 ASFF 结构图片链接地址在这里,但是可以根据描述绘制如下概念性图表说明该单元的工作方式: ![ASFF Structure](https://via.placeholder.com/600x400?text=ASFF+Module+Diagram) 此图仅作示意用途,请参照官方文档或者开源项目获取更精准图形资源。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值