哨兵
设置“哨兵”,哨兵就是待查值,将它放在查找方向的“尽头”处,免去了在查找过程中每一次比较后都要判断查找位置是否越界,从而提高查找速度。
例1(提高效率)
假设一个乱序数组,需要查找一个元素是否在该数组中,这时需要用到顺序查找,也就是遍历数组。
一般情况下我们会写下如下代码:
//函数返回在a数组中查找到元素key的下标,若没有找到返回0
int Search(int a[],int n,int key)
{
//假设我们的数组都是从1下标开始存的
int i;
for(int i=1;i<=n;i++)
{
if(a[i]==key)
return i;//找到了,返回下标
}
return 0;//查找失败
}
Copy
在《大话数据结构》书中运用哨兵元素,改成这样的代码:
//函数返回在a数组中查找到元素key的下标,若没有找到返回0
int Search2(int a[], int n, int key)
{
//同样的,假设我们的数组都是从1下标开始存的
int i=0;
a[0]=key;//哨兵
i=n;
while(a[i]!=key)
{
i--;
}
return i;//返回0就是查找失败
Copy
仔细看来没有什么太大差别,当数组有10亿个元素,我们来看一下4次测试的时间。
Search函数 | 3.494s | 3.202s | 3.216s | 3.237s |
---|---|---|---|---|
Search2函数 | 2.332s | 2.307s | 2.24s | 2.194s |
为什么基本一样的代码,方案2比方案1性能提升了30%~40%左右???
在循环中, Search函数有3条指令: i<=n
、a[i]==key
和i++
;而 Search2函数只有两条指令: a[i]!=key
和i--
,少了i<=n
这个比较操作,所以Search2函数 性能得到了提升 ,这也是哨兵元素的妙用。
例2(解题思路)
统计单词数 我们可以对两个比对的字符串添加哨兵,统一处理查找问题。
string s;
cin >> s;
s = ' ' + s;//此处的空格就是一个哨兵
Copy
参考代码如下:
#include<bits/stdc++.h>
using namespace std;
int main()
{
string a,b;
getline(cin,a);
getline(cin,b);
a=' '+a+' ';//a字符串添加两个哨兵
b=' '+b+' ';//b字符串添加两个哨兵
for(int i=0;i<a.size();i++)
{
if(a[i]>='A'&&a[i]<='Z') a[i]=a[i]+32;
}
for(int i=0;i<b.size();i++)
{
if(b[i]>='A'&&b[i]<='Z') b[i]=b[i]+32;
}
int idx=b.find(a),s=0;
while(idx!=string::npos)
{
if(idx!=string::npos)
s++;
idx=b.find(a,idx+a.size()-1);
}
if(s==0) cout<<"-1";
else cout<<s<<" "<<b.find(a);
}
Copy
打表
对于数据小又容易超时的题,可以采取打表法。用数组来存储我们可能会用到的数据,通过下标来访问,这种方式我们称为 打表 。
优缺点
-
快速,易行(可以写暴力枚举程序)。
-
缺点是代码可能太大,或者情况覆盖不完。
对于不会超时,数据规模适合打表,为了简洁你也可以打表。通过两个例题我们来看一下。
例题1:火柴棒等式
这道题n<=20完全可以通过 打表生成答案 :
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
int main(){
int a[10]={6,2,5,5,4,5,6,3,7,6};
int i,j,temp=0,num=0,k,in[2020],n;
in[0]=6;
for(i=1;i<=2000;i++){
k=i;
temp=0;
while(k){
temp+=a[k%10];
k/=10;
}
in[i]=temp;
}
for(n=0; n <= 24; n++)
{
num=0;
for(i=0;i<=999;i++){
for(j=0;j<=999;j++){
if(n==in[i]+in[j]+in[i+j]+4) num++;
}
}
printf("%d,",num);
}
return 0;
}
Copy
通过上面的程序,我们生成了答案,然后提交下面的代码:
#include<iostream>
using namespace std;
int ans[]={0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,8,9,6,9,29,39,38,65,88,128};
int n;
int main(){
cin>>n;
cout<<ans[n]<<'\n';
return 0;
}
Copy
是不是很简洁。
例题2:日期
思路
计算这两个日期距离1月1日的天数,然后求两个天数的绝对值即可。
方法1
#include <bits/stdc++.h>
using namespace std;
int main()
{
int k, d1, d2;
cin >> k;
for(int i = 0; i < k; i++)
{
cin >> d1 >> d2;
int t1 = 0, t2 = 0;//t1和t2计算出到1月1号的天数,想一想为什么这里在循环中声明?
for(int j = 1; j < d1/100; j++)
{
if(j == 2 || j == 4 || j == 6 || j == 9 || j == 11)
{
t1 += 30;
if(j == 2)
{
t1 -= 1;//题目中只计算闰年,闰年的2月份是29天,所以减去1即可
}
}
else
{
t1 += 31;
}
}
for(int j = 1; j < d2/100; j++)
{
if(j == 2 || j == 4 || j == 6 || j == 9 || j == 11)
{
t2 += 30;
if(j == 2)
{
t2 -= 1;//题目中只计算闰年,闰年的2月份是29天,所以减去1即可
}
}
else
{
t2 += 31;
}
}
t1 += d1 % 100;
t2 += d2 % 100;
if(abs(t1-t2) > 100) cout << "YES\n";
else cout << "NO\n";
}
}
Copy
方法2
我们也可以用一个一维数组,直接存储12个月每个月的天数,这样就减少了很多分支结构,看起来更简洁,效率上也更快。
int day[13] = {0,31,29,31,30,31,30,31,31,30,31,30,31};
Copy
方法2拓展
当然我们也可以用一个数组存储从11月到 ii 月总共需要多少天。
例如:
int day2[13] = {0,31,60,91,121,152,182,213,244,274,305,335,366};
Copy
day2[i]
表示11月到 ii 月总共过去了多少天,注意:这里是不计算 ii 月的。
如果我们不用day2数组,那么我们需要一个for循环来计算从11月到 ii 月需要的天数。通过day2数组,我们可以直接通过下标来访问,优化掉一个for循环,当然这里的循环最多就12次,那如果一道题目是1万次,10万次,外面还有一两个循环嵌套的呢?那我们通过打表,就能把速度大大提升!!!这种优化,在很多程序优化中都有着至关重要的作用。
例题参考代码如下:
#include <bits/stdc++.h>
using namespace std;
int main()
{
int day[13] = {0,31,60,91,121,152,182,213,244,274,305,335,366};
int k, d1, d2, t1, t2;//t1和t2计算出到1月1号的天数
cin >> k;
for(int i = 0; i < k; i++)
{
cin >> d1 >> d2;
t1=day[d1/100-1]+d1%100;
t2=day[d2/100-1]+d2%100;
if(abs(t1-t2) > 100) cout << "YES\n";
else cout << "NO\n";
}
}
Copy