【论文笔记】Imagenet-trained cnns are Biased towards Texture; Increasing Shape Bias Improves accuracy

Imagenet-trained cnns are Biased towards Texture; Increasing Shape Bias Improves accuracy

2021年了,这是新年的第一篇论文笔记,这也意味着新的一年的新的研究生活开始。
目前的研究方向是对抗样本,所以大部分的论文笔记都是对抗样本方向的(first-order、patch、风格迁移、GAN等),也希望自己能够坚持写下去,研究下去,做出一定的成果。

这是一篇CVPR公众号里推送的文章,也在我的文章中提及过,同时也是ICLR2019年的文章,应该是oral,虽然本篇文章并不是关于对抗样本,但是本文提出了一个很新颖的点,是有助于进一步研究对抗样本的生成与防御方法。

论文链接:https://arxiv.org/abs/1811.12231

本文参考了对抗样本(论文解读十二)

该文章探索了CNN在图像分类是更偏重于形状还是纹理。现有理论对于CNN在图像分类时是更基于shape,而作者提出了CNN可能更基于texture的假设,且通过大量的实验证明了

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值