概率论知识回顾(三):事件域,条件概率,全概率,贝叶斯概率

概率论知识回顾(三)

关键点:事件域,条件概率,全概率,贝叶斯概率

知识回顾用于巩固知识和查漏补缺。知识回顾步骤:

  1. 查看知识回顾中的问题,尝试自己解答
  2. 自己解答不出来的可以查看下面的知识解答巩固知识。
  3. 对知识解答有疑问的,说明有关这一点的知识或者公式没有理解透彻或者没有记住,要重新翻看书籍。

知识回顾

  1. 什么是事件域?事件域的公理有哪几点?用语言和公式加以描述。
  2. 概率公理有那三点?它和概率条件有什么不同?
  3. 条件概率公式是什么?怎么解释?
  4. 条件概率的一般推导公式是什么?即 P ( A 1 A 2 ⋯ A n ) = ? P(A_1A_2\cdots A_n) = ? P(A1A2An)=?
  5. 全概率公式是什么?请写出基本推导公式?
  6. 贝叶斯概率公式是什么?简单证明。
  7. 根据条件概率求解的关键点是什么?

知识解答

  1. 什么是事件域?事件域的公理有哪几点?用语言和公式加以描述。

    • 对于样本空间 Ω 来说,他的所有事件子集构成的集合 F ​ \mathcal{F}​ F称为Ω的事件域。因此可知事件域的元素是事件,也就是集合。
    • 事件域公理有三点:
      • Ω ∈ F \Omega \in \mathcal{F} ΩF : 也就是说整个样本空间也是事件域中的一个事件,我们知道这个是必然事件
      • ∀ A i ∈ F \forall A_i \in \mathcal{F} AiF 都有 可列和 ⋃ i = 1 ∞ A i ∈ F \bigcup_{i=1}^{\infty} A_i \in \mathcal{F} i=1AiF : 事件域中的事件的和事件也是事件并且也属于事件域。(毕竟 ⋃ A i ⊆ Ω \bigcup{A_i} \subseteq \Omega AiΩ
      • A ∈ F A \in \mathcal{F} AF A ‾ ∈ F \overline A \in \mathcal{F} AF : 若A是事件,则 A ‾ \overline A A 也是事件。
  2. 概率公理有那三点?它和概率条件有什么不同?

    • 非负性: P ( A ) ≥ 0 , ∀ A ∈ F P(A) \ge 0, \forall A \in \mathcal F P(A)0,AF
    • 规范性: P ( Ω ) = 1 ​ P(\Omega) = 1​ P(Ω)=1
    • 可列可加性 : 若 A j ∈ F , j = 1 , 2 , ⋯   , A i A j = ∅ , i ≠ j A_j \in \mathcal F ,j=1,2,\cdots, A_iA_j = \empty, i \ne j AjF,j=1,2,,AiAj=,i̸=j 则: P ( ⋃ j = 1 ∞ A j ) = ∑ j = 1 ∞ P ( A j ) P(\bigcup_{j=1}^{\infty} A_j) = \sum_{j=1}^{\infty} P(A_j) P(j=1Aj)=j=1P(Aj)
    • 和概率条件不同的地方即把 A i ⊆ Ω ​ A_i \subseteq \Omega​ AiΩ 改成了 A i ∈ F ​ A_i \in \mathcal{F}​ AiF 。其实它们是同一个意思。
  3. 条件概率公式是什么?怎么解释?

    • P ( B ) > 0 ​ P(B) > 0​ P(B)>0 P ( A ∣ B ) = P ( A B ) P ( B ) ​ P(A|B) = \frac{P(AB)}{P(B)}​ P(AB)=P(B)P(AB)
    • P(A|B)表示B发生时A发生的概率。换个思路,暂时忽略掉全局样本空间Ω。就是求在B中A发生的概率。就是A在B中的大小除以B的大小。那古典概型来说即 P ( A ∣ B ) = n A B n B ​ P(A|B) = \frac{n_{AB}}{n_{B}}​ P(AB)=nBnAB 这是,再加上基本事件总数,即变为 P ( A ∣ B ) = n A B / n Ω n B / n Ω = P ( A B ) P ( B ) ​ P(A|B) = \frac{n_{AB}/n_\Omega}{n_{B}/n_\Omega} = \frac{P(AB)}{P(B)}​ P(AB)=nB/nΩnAB/nΩ=P(B)P(AB)
  4. 条件概率的一般推导公式是什么?即 P ( A 1 A 2 ⋯ A n ) = ? ​ P(A_1A_2\cdots A_n) = ?​ P(A1A2An)=?

    P ( A 1 A 2 ⋯ A n ) = P ( A n ∣ A 1 A 2 ⋯ A n − 1 ) P ( A n − 1 ∣ A 1 A 2 ⋯ A n − 2 ) ⋯ P ( A 2 ∣ A 1 ) P ( A 1 ) P(A_1A_2\cdots A_n) = P(A_n|A_1A_2\cdots A_{n-1})P(A_{n-1}|A_1A_2\cdots A_{n-2})\cdots P(A_2|A_1)P(A_1) P(A1A2An)=P(AnA1A2An1)P(An1A1A2An2)P(A2A1)P(A1)

  5. 全概率公式是什么?请写出基本推导公式?

    • 如果 B i ​ B_i​ Bi两两互不相容,并且 ⋃ i = 1 ∞ B i = Ω ​ \bigcup_{i=1}^{\infty} B_i = \Omega​ i=1Bi=Ω 则有: P ( A ) = ∑ i = 1 ∞ P ( B i ) P ( A ∣ B i ) ​ P(A) = \sum_{i=1}^{\infty}P(B_i)P(A|B_i)​ P(A)=i=1P(Bi)P(ABi)
    • 证明:
      • 根据条件概率公式, 有 P ( B i ) P ( A ∣ B i ) = P ( A B i ) P(B_i)P(A|B_i) = P(AB_i) P(Bi)P(ABi)=P(ABi)
      • 又因为 B i B_i Bi两两互不相容,因此可知 ∑ P ( A B i ) = P ( A ⋃ i = 1 ∞ B i ) \sum P(AB_i) = P(A\bigcup_{i=1}^{\infty}B_i) P(ABi)=P(Ai=1Bi)
      • 又因为 ⋃ i = 1 ∞ B i = Ω \bigcup_{i=1}^{\infty} B_i = \Omega i=1Bi=Ω 可知 P ( A ⋃ i = 1 ∞ B i ) = P ( A Ω ) = P ( A ) P(A\bigcup_{i=1}^{\infty}B_i) = P(A\Omega) = P(A) P(Ai=1Bi)=P(AΩ)=P(A) 证毕。
  6. 贝叶斯概率公式是什么?简单证明。

    • 如果 B i ​ B_i​ Bi两两互不相容,并且 ⋃ i = 1 ∞ B i = Ω ​ \bigcup_{i=1}^{\infty} B_i = \Omega​ i=1Bi=Ω 则有: P ( B i ∣ A ) = P ( B i ) P ( A ∣ B i ) ∑ i = 1 ∞ P ( B i ) P ( A ∣ B i ) ​ P(B_i|A) = \frac{P(B_i)P(A|B_i)}{\sum_{i=1}^{\infty}P(B_i)P(A|B_i)}​ P(BiA)=i=1P(Bi)P(ABi)P(Bi)P(ABi)
    • 证明:
      • 首先根据条件概率公式 P ( B i ) P ( A ∣ B i ) = P ( A B i ) P(B_i)P(A|B_i) = P(AB_i) P(Bi)P(ABi)=P(ABi)
      • 其次,根据全概率公式,有 ∑ i = 1 ∞ P ( B i ) P ( A ∣ B i ) = P ( A ) \sum_{i=1}^{\infty}P(B_i)P(A|B_i) = P(A) i=1P(Bi)P(ABi)=P(A)
      • P ( A B i ) P ( A ) = P ( B i ∣ A ) \frac{P(AB_i)}{P(A)} = P(B_i|A) P(A)P(ABi)=P(BiA) 证毕。
  7. 根据条件概率求解的关键点是什么?

    • 求解条件概率有关问题(包括但不限于简单条件概率,全概率,贝叶斯概率)的关键是找到对应的条件概率,对于每一种事件的概率和条件概率要寻找正确,并且要确定问题是否是独立重复概率还是条件概率。
  • 5
    点赞
  • 23
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值