概率论知识回顾(七)
重点:概率分布之间的关系
知识回顾用于巩固知识和查漏补缺。知识回顾步骤:
- 查看知识回顾中的问题,尝试自己解答
- 自己解答不出来的可以查看下面的知识解答巩固知识。
- 对知识解答有疑问的,说明有关这一点的知识或者公式没有理解透彻或者没有记住,要重新翻看书籍。
知识回顾
- 超几何分布和二项分布的关系?
- 泊松分布和二项分布的关系?什么时候泊松分布可以近似代替二项分布?
- 负二项分布与二项分布的关系?
知识解答
-
超几何分布和二项分布的关系?
- 在超几何分布中 lim N → ∞ M N = p \lim_{N\rightarrow \infty} \frac{M}{N} = p limN→∞NM=p 的时候,超几何分布可以看做二项分布。
- 前面已经说过,超几何分布是不放回抽样,也就是说每次抽样后,样本数量会发生变化从而影响之后抽样的概率。
- 然而,如果 lim N → ∞ M N = p \lim_{N\rightarrow \infty} \frac{M}{N} = p limN→∞NM=p 那么,每次抽样后,因为样本被视为无穷大,因此不放回抽样后并不会影响之后抽样的概率,可以视为二项分布。
-
泊松分布和二项分布的关系?什么时候泊松分布可以近似代替二项分布?
- lim n → ∞ n p = λ \lim_{n \rightarrow \infty} np = \lambda limn→∞np=λ 时,二项分布 B ( n , p ) B(n,p) B(n,p) 可以看做泊松分布 λ k e − λ k ! \frac{\lambda^k e^{-\lambda}}{k!} k!λke−λ(公式推导略)
- 前面说过,当n非常大的时候,而 p 非常小的时候二项分布的计算会很麻烦。而泊松分布弥补了这一点。
- 当 n ≥ 10 或 p ≤ 0.1 n \ge 10 或 p \le 0.1 n≥10或p≤0.1 时, 二项分布可以近似使用泊松分布代替。
-
负二项分布与二项分布的关系?
令 P{X = k} 代表二项分布。 P{Y = k} 代表负二项分布。则有
-
P { X ≤ r } = P { Y ≥ n } P\begin{Bmatrix}X ≤ r\end{Bmatrix} = P\begin{Bmatrix}Y ≥ n\end{Bmatrix} P{X≤r}=P{Y≥n}
在 负二项分布中,求得是 在 Y=k 次实验中,事件A出现r次的概率,也就是说 P{Y ≥ n} 求得是在事件A出现 r 次的情况下,试验 大于n次的概率。也就是说,在这个概率下,试验n次事件A出现次不一定会出现r次,因为事件A可能会在 大于n次实验中出现。也就是对应的二项分布中的 X ≤ r.
-
P { X > r } = P { Y < n } P\begin{Bmatrix}X > r\end{Bmatrix} = P\begin{Bmatrix}Y < n\end{Bmatrix} P{X>r}=P{Y<n}
同理,在负二项分布中,上面的概率求得是小于n次实验中事件A出现r次的概率,也就是对应二项分布中n次实验中事件A出现次数大于r的概率。
-