概率论知识回顾(七):概率分布之间的关系

该博客是概率论知识回顾第七篇,重点讲解概率分布之间的关系。回顾了超几何分布、泊松分布、负二项分布与二项分布的关系及近似条件,如超几何分布在特定条件下可视为二项分布,n≥10或p≤0.1时二项分布可用泊松分布近似等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

概率论知识回顾(七)

重点:概率分布之间的关系

知识回顾用于巩固知识和查漏补缺。知识回顾步骤:

  1. 查看知识回顾中的问题,尝试自己解答
  2. 自己解答不出来的可以查看下面的知识解答巩固知识。
  3. 对知识解答有疑问的,说明有关这一点的知识或者公式没有理解透彻或者没有记住,要重新翻看书籍。

知识回顾

  1. 超几何分布和二项分布的关系?
  2. 泊松分布和二项分布的关系?什么时候泊松分布可以近似代替二项分布?
  3. 负二项分布与二项分布的关系?

知识解答

  1. 超几何分布和二项分布的关系?

    • 在超几何分布中 lim ⁡ N → ∞ M N = p \lim_{N\rightarrow \infty} \frac{M}{N} = p limNNM=p 的时候,超几何分布可以看做二项分布。
    • 前面已经说过,超几何分布是不放回抽样,也就是说每次抽样后,样本数量会发生变化从而影响之后抽样的概率。
    • 然而,如果 lim ⁡ N → ∞ M N = p \lim_{N\rightarrow \infty} \frac{M}{N} = p limNNM=p 那么,每次抽样后,因为样本被视为无穷大,因此不放回抽样后并不会影响之后抽样的概率,可以视为二项分布。
  2. 泊松分布和二项分布的关系?什么时候泊松分布可以近似代替二项分布?

    • lim ⁡ n → ∞ n p = λ \lim_{n \rightarrow \infty} np = \lambda limnnp=λ 时,二项分布 B ( n , p ) B(n,p) B(n,p) 可以看做泊松分布 λ k e − λ k ! \frac{\lambda^k e^{-\lambda}}{k!} k!λkeλ(公式推导略)
    • 前面说过,当n非常大的时候,而 p 非常小的时候二项分布的计算会很麻烦。而泊松分布弥补了这一点。
    • n ≥ 10 或 p ≤ 0.1 n \ge 10 或 p \le 0.1 n10p0.1 时, 二项分布可以近似使用泊松分布代替。
  3. 负二项分布与二项分布的关系?

    令 P{X = k} 代表二项分布。 P{Y = k} 代表负二项分布。则有

    • P { X ≤ r } = P { Y ≥ n } P\begin{Bmatrix}X ≤ r\end{Bmatrix} = P\begin{Bmatrix}Y ≥ n\end{Bmatrix} P{Xr}=P{Yn}

      在 负二项分布中,求得是 在 Y=k 次实验中,事件A出现r次的概率,也就是说 P{Y ≥ n} 求得是在事件A出现 r 次的情况下,试验 大于n次的概率。也就是说,在这个概率下,试验n次事件A出现次不一定会出现r次,因为事件A可能会在 大于n次实验中出现。也就是对应的二项分布中的 X ≤ r.

    • P { X &gt; r } = P { Y &lt; n } P\begin{Bmatrix}X &gt; r\end{Bmatrix} = P\begin{Bmatrix}Y &lt; n\end{Bmatrix} P{X>r}=P{Y<n}

      同理,在负二项分布中,上面的概率求得是小于n次实验中事件A出现r次的概率,也就是对应二项分布中n次实验中事件A出现次数大于r的概率。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值