【SHAP解释性机器学习】01 创建解释器

实例


Shapley值是合作博弈理论中广泛使用的一种方法,它具有理想的性质。本教程旨在帮助您理解如何计算和解释基于Shapley的机器学习模型。我们将采取实际动手的方法,使用shap Python包来逐步解释更复杂的模型。

实例一

import shap
import xgboost as xgb

x,y= shap.datasets.adult()
seed=12345
xgb_model=xgb.XGBRegressor(random_state=seed).fit(x,y)
explainer = shap.TreeExplainer(xgb_model)
shap_values = explainer.shap_values(x)

实例二

import shap
import xgboost as xgb

x,y= shap.datasets.adult()
seed=12345
xgb_model=xgb.XGBRegressor(random_state=seed).fit(x,y)
explainer = shap.Explainer(model, x)
shap_values = explainer(x)

输出内容

实例一输出

print(x.shape)
print(shap_values.shape)

[user@machine01 shap]$ (152, 11)
[user@machine01 shap]$ (152, 11)

此处输出的x的维度和 shap_values的维度都是(152,11),这说明每个特征与shap值是对应的关系。


实例二的输出

print(shap_values.data)
print(shap_values.values)
print(shap_values.base_values)
项目Value
shap_values.datax 的值,所有特征的原值
shap_values.base_values所有样本汇总的平均shap值,所有值都一样
shap_values.values每个特征的SHAP值,正值代表正向贡献,负值代表负向贡献

解释器列表

SHAP公共对象和函数的API参考。还提供了演示如何使用每个对象/函数的API的示例笔记本。

项目Value
shap.ExplainerUses Shapley values to explain any machine learning model or python function.
shap.TreeExplainerUses Tree SHAP algorithms to explain the output of ensemble tree models.
shap.GPUTreeExplainerExperimental GPU accelerated version of TreeExplainer.
shap.LinearExplainerComputes SHAP values for a linear model, optionally accounting for inter-feature correlations.
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

wangxiancao

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值