线性相关性、基、维数-线性代数课时9(MIT Linear Algebra , Gilbert Strang)

         这是Strang教授的第九讲,讲解的内容是线性相关性、基的概念和维数的概念。

背景知识

        对于未知数个数大于方程个数的线性方程组,我们知道对于Ax=0一定有非零解,原因是在消元过程中一定存在自由变量。

线性相关性

        定义1:对于向量x_1,x_2,...,x_n,如果c_1x_1+c_2x_2+...+c_3x_3=0当且仅当c_i=0成立,那么向量x_1,x_2,...,x_n线性无关。

        定义2:如果v_1,...,v_n是矩阵A的列向量,当且仅当Ax=0只有0解时,v_1,...,v_n线性无关。

        定义2也可以表述为,矩阵A的列向量线性无关当且仅当N(A)=0。如果A的列向量线性无关,那么A一定是列满秩的,rank(A)=n。

生成向量空间

        定义:A set of vectors spans a space if their linear combinations fill the space.

        定义的解释:如果有一组向量v_1,...,v_n,它们生成的向量空间是只包含v_1,...,v_n全部线性组合的向量空间。比如,A的列空间是A的列向量生成的向量空间;A行空间是由A的行向量生成的向量空间。

        基的概念是和向量空间联系在一起的,它的定义:

        向量空间的一组“基”是指:一组向量v_1,...,v_n,这一组向量包含如下两个性质:1.它们线性无关;2.他们生成了整个向量空间。

        例如,(1,0)、(0,1)是R^2的一组基;(1,0,0)、(0,1,0)、(0,0,1)是R^3的一组基。

        根据“基”的定义,可以知道对于R^n的一组基有n个线性无关的向量,他们组成的nxn矩阵可逆。向量空间可以有对组基,但他们的向量个数相同。

维数

        定义:向量空间的维数是向量空间任意一组基的向量个数。

       根据基和维数的概念可以推导出关于矩阵A的如下一些事实:1. A的列空间的维数dim(C(A)) = rank(A);2.A的零空间的维数dim(N(A)) =n-rank(A)

线性相关性、基、维数这些概念并不仅仅只适用于向量空间,也可以延展到矩阵空间和函数空间,书上有举例介绍。本节课讲解了几个概念,但他们都很重要,需要理解清楚。

        本节课的内容对应《INTRODUCTION TO LINEAR ALGEBRA》3.5章节。

下节课:四个基本子空间-线性代数课时10(MIT Linear Algebra , Gilbert Strang)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值