二阶系统的时域响应及动态性能(时域分析)

本文深入探讨了二阶系统在不同阻尼比下的动态特性,详细解析了超调量、调节时间等关键性能指标,并通过MATLAB仿真展示了阻尼比对系统响应的影响,揭示了最佳阻尼系数的选择原则。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、二阶系统传递函数的标准形式

典型结构的二阶系统如下图:
在这里插入图片描述
其前向通道传函:
在这里插入图片描述
开环传函:
在这里插入图片描述
闭环传函:
在这里插入图片描述
Φ ( s ) \Phi_{(s)} Φ(s)为典型二阶系统传递函数的标准形式。 ξ \xi ξ 为阻尼比, ω n \omega _{n} ωn 为无阻尼自然震荡频率。这两个参数称为二阶系统的特征参数

系统的特征方程:
在这里插入图片描述
特征根 :
在这里插入图片描述
注意当 ξ \xi ξ不同时,特征根有不同的形式,系统的阶跃响应形式也不同,它的阶跃响应有振荡和非振荡两种情况。
在这里插入图片描述
上面提到了极点(特征根)位置,说下系统稳定性的判别方法。当系统的极点位置都在复平面的左半平面时,则该系统稳定。 从上图看出只有当 ξ = 0 \xi=0 ξ=0 时系统是不稳定的。

2、二阶系统时域下的性能指标

2.1、当 0 < ξ < 1 0<\xi<1 0<ξ<1 欠阻尼衰减振荡下的二阶系统性能指标

单位阶跃输入信号下的性能指标 :

超调量:
在这里插入图片描述
调节时间ts: t s = 3.5 ζ ω n t_{s}=\frac{3.5}{\zeta \omega _{n}} ts=ζωn3.5

由上可见,如果无阻尼振荡频率 ω n \omega _{n} ωn一定的话,那么二阶系统的动态性能由 ζ \zeta ζ决定。
工程上有个最佳阻尼系数 ζ = 0.707 = 2 2 \zeta=0.707=\frac{\sqrt{2}}{2} ζ=0.707=22
。这个参数怎么确定的呢,往下分析。

2.2、不同阻尼比对二阶系统动态性能的影响

例如:一个典型的二阶系统传函 Φ ( s ) = ω n 2 s 2 + 2 ζ ω n s + ω n 2 \Phi _{(s)}=\frac{\omega_{n} ^{2}}{s^{2}+2\zeta\omega _{n} s+\omega_{n} ^{2}} Φ(s)=s2+2ζωns+ωn2ωn2 ,我们令 ω n = 4 \omega_{n}=4 ωn=4,看 ξ \xi ξ为不同值的单位阶跃响应下的动态时间曲线。用MATLAB仿真下:
在这里插入图片描述
仿真程序如下:

>> step(tf(4^2,[1,2*0*4,4^2]));
axis([0 3 0 2.5])
hold on
step(tf(4^2,[1,2*1*4,4^2]));
axis([0 3 0 2.5])
hold on
step(tf(4^2,[1,2*1.5*4,4^2]));
axis([0 3 0 2.5])
hold on
step(tf(4^2,[1,2*0.8*4,4^2]));
axis([0 3 0 2.5])
hold on
step(tf(4^2,[1,2*0.707*4,4^2]));
axis([0 3 0 2.5])
hold on
step(tf(4^2,[1,2*0.5*4,4^2]));
axis([0 3 0 2.5])
hold on

可以看出当 ζ = 0.707 \zeta=0.707 ζ=0.707 动态性能比较好,所以在工程上对二阶系统的整定为 ζ = 0.707 \zeta=0.707 ζ=0.707,但是对于系统的阶跃响应不想要超调的话,可以把整定 ζ = 1 \zeta=1 ζ=1,这样系统是临界阻尼的,不会有超调。

3、典型I型二阶系统

如果把典型结构的二阶系统化成尾1型:

在这里插入图片描述
那么K为开环放大系数,T表示时间常数。 上图在陈伯时的运动控制系统中被称为典型I型二阶系统。

对应二阶系统的闭环传函标准型为:
在这里插入图片描述
w n = k T w_{n}=\sqrt{\frac{k}{T}} wn=Tk ξ = 1 2 1 K T \xi=\frac{1}{2}\sqrt{\frac{1}{KT}} ξ=21KT1 如果工程整定 ζ = 0.707 \zeta=0.707 ζ=0.707 。则 KT=0.5 。

注意:

  • 按KT=0.5整定时,那么这个系统就是稳定的,并且在超调和稳定时间上都是最优的。
    其实在KT=0.5不变的情况下,K值越大,系统的带宽也大,响应越快;
  • 当KT=0.5时,系统的响应是有点超调的,如果对于一个不能有超调的系统来说,可以设置KT值小点,(比如KT=0.4;即放大 ξ \xi ξ)牺牲点响应时间,来提高系统的稳定性。其实也就是调大点阻尼比来提高系统的稳定性。减小超调。
  • 系统的KT值过大(阻尼比过小),那么这个系统就容易出现震荡。
  • 其实为获得较好的动稳态性能,不管是几阶系统常常取阻尼比 ξ = 0.707 \xi=0.707 ξ=0.707 对应的参数,作为系统的整定

在时域分析中系统的几个性能指标,如上升时间,峰值时间,调节时间,超调量都与我们讨论的自然震荡频率( w n w_{n} wn)和阻尼比( ξ \xi ξ)这两个特征参数相关。

典型二阶系统的频域分析见:二阶系统的带宽(频域分析)

### 二阶系统的传递函数及其响应时间 对于一个典型的二阶线性系统,在控制理论中其标准形式的传递函数通常表示为: \[ G(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_ns + \omega_n^2} \] 其中 \( \omega_n \) 是自然频率,\( \zeta \) 是阻尼比。当给定输入时,此系统的单位阶跃响应可以通过求解上述传递函数得到。 为了计算具有特定响应时间(例如0.03秒)的二阶系统的参数,需要考虑几个性能指标,包括上升时间、峰值时间和调节时间等。这些指标与系统的极点位置密切相关[^1]。 #### 使用MATLAB和Simulink进行分析 在MATLAB环境中定义并分析这样的系统非常方便。下面是一个简单的例子,展示如何创建一个二阶系统的模型,并设置使其达到大约0.03秒内的快速响应特性。 ```matlab % 定义自然频率wn 和 阻尼比 zeta 的初始猜测值 wn = 100; % 自然角频率 (rad/s),可以根据具体需求调整 zeta = 0.707; % 阻尼比,选择临界阻尼附近可以获得较快而不振荡的响应 % 创建连续时间SISO动态系统对象 sys = tf([wn^2], [1, 2*zeta*wn, wn^2]); % 绘制阶跃响应图 figure; step(sys); title('Step Response of Second Order System'); xlabel('Time (seconds)'); ylabel('Amplitude'); % 获取一些重要的瞬态响应特征数据 [y,t,x] = stepinfo(sys); disp(['Rise Time: ', num2str(y.RiseTime)]); disp(['Settling Time: ', num2str(y.SettlingTime)]); if y.SettlingTime <= 0.03 disp('The system meets the requirement within 0.03 seconds.'); else disp('Adjust parameters to meet requirements.') end ``` 这段代码首先设置了二阶系统的自然频率 `wn` 和阻尼比 `zeta` ,接着利用 `tf()` 函数构建了一个传递函数模型 `sys` 。之后调用了 `step()` 来绘制该系统的阶跃响应曲线,并通过 `stepinfo()` 提取有关瞬态行为的信息,比如上升时间和稳定时间。最后判断如果系统的稳定时间小于等于0.03秒,则认为满足条件;否则提示需调整参数以符合要求。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值