【学习记录】半导体物理与器件

0 写这篇记录的初衷

最近在学习Donald A. Neamen的《半导体物理与器件(第四版)》的时候,发现贯穿整本书的公式都是由一些原始公式演化而来的,但是书中符号繁多、标注和表述不符合我的阅读习惯,导致学习过一遍后并不能很好地理解,因此通过这篇记录梳理书中的逻辑。

1 薛定谔波动方程

1.1 薛定谔波动方程是什么?

薛定谔波动方程是量子力学的核心方程之一,用来描述微观粒子(如电子、光子等)的量子状态及其随时间的演化。在经典物理中,我们用牛顿定律来描述宏观物体的运动,而在量子力学中,薛定谔方程起到了类似的作用,用以描述粒子的运动和行为。

1.2 薛定谔波动方程能做什么?

  • 描述微观粒子的行为:在量子力学中,粒子被认为具有波动性,波函数 ψ\psiψ 描述了粒子在空间中的概率分布。通过解薛定谔方程,我们可以获得粒子在不同位置和时间上出现的概率。

  • 预测粒子的演化:薛定谔方程提供了一种工具来预测粒子随时间如何变化。通过解含时薛定谔方程,我们可以了解粒子波函数随时间的演化,进而预测未来状态。

  • 确定能量:在定态薛定谔方程中,通过解方程可以得到粒子的可能能量状态(也称为能级),以及相应的波函数。这对于描述如电子在原子中的能级、粒子在势阱中的行为等具有重要意义。

1.3 薛定谔波动方程的形式

一维非相对论的薛定谔波动方程表示为:

其中,\Psi \left ( x,t \right )为波函数,描述了系统在时间t和位置x的状态。V\left ( x \right )为与时间无关的势场函数,m是粒子的质量,j是虚数单位\sqrt{-1}

可以将波函数\Psi \left ( x,t \right )写为如下形式,包括与时间有关的部分和与坐标有关(与时间无关)的部分:

其中与时间有关的项\phi \left ( t \right )可以解出:

(1.0)

与时间无关的项\psi \left ( x \right )可以写为:

E为粒子的总能量,有E=h\nu或者E= \frac{h\omega}{2\pi}

最常用的薛定谔波动方程的形式如下:

(1.1)

修正普朗克常数\bar{h}值为\frac{h}{2\pi }。需要记住这个式子,它将被应用在很多地方。通过这个式子可以解出\psi \left ( x \right )

最终,将\psi \left ( x \right )\phi \left ( t \right )相乘,即得波函数\Psi \left ( x,t \right )

1.4 薛定谔波动方程的应用

1.4.1 自由空间中的粒子

自由空间中,没有外力作用于粒子,那么势函数V\left ( x \right )为常数,而且E> V\left ( x \right )。简单来说可以认为V\left ( x \right )=0,那么根据(1.1):

这个微分方程的解为:

如果定义波数k=\sqrt{\frac{2mE}{\bar{h^{2}}}}=\sqrt{\frac{p^2}{\bar{h}^2}}=\frac{p}{\bar{h}},那么解也可以写为:

而与时间有关的函数结果为(1.0),由于\Psi \left ( x,t \right )为与时间有关的部分和与坐标有关(与时间无关)的部分的乘积,那么上述解与(1.0)的乘积即为整个波动方程的结果:

(1.2)

该结果是一个行波,就是说自由空间中的粒子运动表现为行波。系数为A的项表示方向为+x的波,系数为B的项为方向为-x的波,系数由边界条件\int_{-\infty }^{+\infty}\left | \psi \left ( x \right ) \right |^{2}dx=1确定。

行波(Traveling Wave)是波动的一种形式,它指的是波形以一定的速度在空间中传播,将能量从一个位置传递到另一个位置,而介质中的质点只是在其平衡位置附近作周期性振动,并不随波一起移动。行波是波动最基本、最常见的形式,广泛存在于各种物理现象中,例如声波、水波、电磁波等。

可以把行波想象成海中的波浪,它们从远方向岸边传播,波峰和波谷不断前进。波浪中每一点的水上下振动,但波形本身向前传播,带动能量的传递。

如果想描述沿+x方向运动的粒子,则系数B=0

自由粒子的能量、波长\lambda =\frac{h}{p}、动量p=\bar{h}k都有明确意义。

1.4.2 无限深势阱中的粒子

与上一节不同,这是束缚态粒子的情况。势函数V\left ( x \right )是位置的函数,如下图所示:

因为粒子能量E是有限的,那么在区域I和III中波函数必须为零,或者\psi \left ( x \right )=0,意为粒子不可能穿越无限深势阱,不可能出现在区域I和III中,在这两个区域里发现粒子的概率为0。

于是只需要考虑区域II,在该区域V\left ( x \right )=0,与时间无关的薛定谔波动方程写为:

看以看出其实和上一节的式子一样。可以解出:

应用边界条件在x=a处有\psi \left ( x=a \right )=0=A_{2}\sin ka,该式当ka=n\pi时成立,参数n为量子数。通过应用这个边界条件,我们引入了量子数n,这导致后面求出的结果会是分立值(能量的量子化)。最终上式表示为:

此表达式为驻波表达式,代表电子处于无限深势阱中。 可以说,行波代表自由粒子,而驻波代表束缚态粒子。如果令k_n=\frac{n\pi }{a},上式也可写为\psi \left ( x \right )=\sqrt{\frac{2}{a}}\sin k_n x

粒子的总能量表示为:

是分立的值。束缚态粒子能量的量子化是一个极其重要的结论。

1.4.3 阶跃势垒中的粒子

在阶跃势中,我们让粒子从x=-\infty开始沿着+x方向流动,入射到阶跃势垒上。粒子总能量小于势垒的高度,即E< V_0。阶跃势的函数如下图:

在区域I中势函数V=0,则有:

这和上述两节讨论过的任何势函数为0的情况一致,方程通解也一致,只是系数符号稍作改变:

其中常量k_1=\sqrt{\frac{2mE}{\bar{h^{2}}}}也与前面的讨论完全一样。在上式中,第一项代表入射波,第二项代表反射波,二者都是行波。

在区域II中,势函数V=V_0,则有:

这是那个很重要的关系式(1.1),由于已经知道E< V_0,所以式子中写为V_0-E。解出波函数为:

其中常数k_2=\sqrt{\frac{2m\left ( V_0-E \right )}{\bar{h}^2}},应用边界条件可知系数A_2=A_1+B_1

E< V_0的情况下,A_2不为零,那么在区域II中发现粒子的概率密度函数\psi_2 \left ( x \right )\cdot \psi_2^{*} \left ( x \right )也不为零,这表示入射粒子有一定的概率会穿过势垒到达区域II中。

在阶跃势函数中,定义反射系数R,由于入射速度和反射速度数值相等,则反射系数为:

反射系数为反射流相对于入射流的比率。通过计算可以知道R=1,这表示所有E< V_0的粒子流入射到势垒上将全部被反射回来,虽然入射粒子有一定的概率会穿过势垒到达区域II中,但最终必定完全返回区域I中。

1.4.4 矩形势垒中的粒子

矩形势垒如下图,仍然关注入射粒子能量E< V_0的情况:

三个区域中与时间无关的薛定谔方程的解分别为:

由于推导过程和前述三个小节一致,这里直接给出了结果。常数k_1=\sqrt{\frac{2mE}{\bar{h^{2}}}}k_2=\sqrt{\frac{2m\left ( V_0-E \right )}{\bar{h}^2}}也与前面一致。

下面解释三个式子中的系数如何保留。对于第三个式子,系数B_3代表负方向的行波,但是在区域III,没有势场可以让粒子反射,于是B_3=0。对于第二个式子,由于势垒宽度有限,应当保留两个指数项,或者说每一项都是有界的。在第一个式子中,既存在入射也存在反射粒子,所以保留所有指数项,如果将A_1作为已知条件,可以使用四个边界条件:\psi_2 \left ( x=0 \right )=\psi_2\left ( x=a \right )\psi_1 \left ( x=0 \right )=\psi_1\left ( x=a \right )求得B_1A_2B_2A_3这四个系数。

在矩形势垒中,定义透射系数T,表示为区域III中的透射粒子流占区域I中入射粒子流的比率,由于V=0使入射和透射速度相等,则透射系数为:

通过考虑E \ll V_0的特殊情况,计算出T\approx 16\frac{E}{V_0}\left ( 1-\frac{E}{V_0} \right )e^{-2k_2 a},这说明:当粒子撞击到势垒时,存在有限的概率穿过势垒到达区域III。这叫做隧道效应。

1.4.5 克勒尼希-彭尼模型

紧密排列在一维阵列中的很多原子的势函数如下:

克勒尼希-彭尼模型简化了这一势函数,是理想化的:

我们关注的是E< V_0的情况,此时粒子被束缚在晶体中,处于势阱中,并且有可能发生隧穿。根据布洛赫数学定理,所有周期性变化的势能函数的单电子势函数必须写为:

(1.4.5.1)

其中u\left ( x \right )是以\left ( a+b \right )为周期的函数。对于波动方程的全解,其包含两个部分:

或者合并指数项写为:

这就是电子在单晶材料中的运动的行波解。其振幅u\left ( x \right )是一个周期函数。

为了确定参数k、总能量E和势函数V_0之间的关系,在此简单阐述思路:在区域I内V\left ( x \right )=0,对(1.4.5.1)求二阶导,带入与时间无关的薛定谔波动方程;在区域II内V\left ( x \right )=V_0,同样求二阶导应用于与时间无关的薛定谔波动方程。通过这两步,分别定义了两个参数,与能量E有关的参数\alpha

和与势函数V_0有关的参数\beta

需要注意\beta是虚数。通过应用边界条件,可以解得:

这个式子将参数k与总能量E和势函数V_0分别通过参数\alpha\beta联系起来。这个式子没有解析解,可以利用图解法观察三者之间的关系。

在用图解法观察三者之间的关系之前,我们先看自由粒子参数k与总能量E的关系。自由粒子意味着V_0=0的特殊情况,可以解得E=\frac{k^2\bar{h}^2}{2m},这是一个抛物线关系的E-k关系,如图所示:

前面我们已经得到自由粒子的动量p=\bar{h}k有明确意义,所有横轴是pk

而由于能量E是不连续的,下图显示了允带和禁带的概念:

进行周期性平移,得到E-k关系的简约布里渊区或简约k空间曲线:

1.5 小结

最重要的是知道波函数\Psi \left ( x,t \right )表示系统在时间t和位置x的状态。但是在大部分时候我们都是基于(1.1)先写出与时间无关的薛定谔方程的解。

然后在自由空间粒子情况下,我们将(1.1)与(1.0)相乘得到整个波动、的结果\Psi \left ( x,t \right )

在无限深势阱(束缚态)粒子情况下,仅使用(1.1)来分析,并得到能量量子化结论;

在阶跃势垒粒子情况下,仅使用(1.1)来分析,并得到反射系数;

在矩形势垒粒子情况下,仅使用(1.1)来分析,并得到透射系数,隧道效应;

在克勒尼希-彭尼模型中,得到了k空间曲线图,简约布里渊区。

2 费米能级

2.1 费米能级是怎么来的?

涉及大量粒子时,我们感兴趣这些粒子作为整体的统计学状态。定义密度数N\left ( E \right )代表单位体积单位能量的粒子数,定义状态密度函数g\left ( E \right )代表单位体积单位能量的量子状态。函数f_F\left ( E \right )定义为二者的比值,表示能量为E的量子态被电子占据的可能性,称为费米-狄拉克分布函数:

该分布函数的另一种意义是被电子填充的量子态占总量子态的比率。分布函数中的E_F称为费米能级。

此外,1-f_F\left ( E \right )就是空状态的概率,其与f_F\left ( E \right )关于费米能级E_F对称。

2.2 用图像理解费米能级

考虑T=0KE< E_F的情况,这导致f_F\left ( E< E_F \right )=1;而T=0KE> E_F时,导致f_F\left ( E> E_F \right )=0。图像如下:

这直观地说明, T=0K时,电子都处在最低能量状态上,所有E< E_F的量子态被完全占据,体现为f_F\left ( E< E_F \right )=1;而所有E> E_F的量子态被占据的可能性为零,体现为f_F\left ( E> E_F \right )=0。这样一来,在T=0K时,费米能级可以确定电子的统计学分布,但并不一定对应一个允带能级。

考虑温度逐渐升高的情况,电子就会得到一定的热能,一部分电子就会跃入更高的能级中,也就意味着有效能量状态中的电子分布发生了改变。T> 0K时,令E= E_F可以得到:

这个式子的意思是,能量为E= E_F的量子态被占据的可能性为1/2。

为了更好理解这个1/2的含义,这里做出一些解释:

在绝对零度时,所有能量低于费米能级的态都是被电子占据的,而高于费米能级的态都是空的。因此在 0 K 时,费米能级上的态被占据的概率是 1 或 0,取决于它在费米能级之上还是之下。

当温度大于 0 K 时,电子会因热激发而从低能态跃迁到高能态。此时,即使是处于费米能级的电子,也有可能跃迁到更高的能量态,导致费米能级上的态不再总是被占据,而是有 50% 的概率被电子占据,50% 的概率是空的。

下图显示了随着温度升高,费米-狄拉克分布函数的变化(假设费米能级不随着温度变化):

从图中也能看出,T> 0K时,高于费米能级E_F的能量状态将被一些跃迁的电子占据从而使概率不为零,而低于费米能级E_F的一些能量状态为空。

2.3 简要定义费米能级

费米能级E_F是描述费米子(如电子)在绝对零度(0 K)下,系统中电子可以占据的最高能量状态。在绝对零度时,所有能量低于费米能级的状态都被电子完全占据,而高于费米能级的状态完全空闲。

2.4 麦克斯韦-玻尔兹曼近似

我们在讨论费米能级是怎么来的过程中提到了费米-狄拉克分布。考虑E-E_F\gg kT的情况,这时费米-狄拉克分布中的分母的指数项远远大于1,于是我们忽略这个1,从而费米-狄拉克分布可以写为:

这个式子就是费米-狄拉克分布的麦克斯韦-玻尔兹曼近似,或叫做简约玻尔兹曼近似。

2.5 在哪里用得到费米能级?

由于费米能级一开始是在费米-狄拉克分布函数中出现的,所以这一节当中包含了用得到费米能级或者费米-狄拉克分布的一些场景。

2.5.1 电子和空穴的平衡分布

导带电子关于能量的分布为导带中允许量子态的密度g_c\left ( E \right )与某个量子态被电子占据的概率的乘积:

价带空穴的分布为价带允许量子态的密度g_v\left ( E \right )与某个量子态不被电子占据的概率的乘积:

2.5.2 热平衡电子浓度和热平衡空穴浓度

n\left ( E \right )在能量范围上积分,积分下限为E_c,上限为正无穷,并使用玻尔兹曼近似,就得到导带电子的热平衡浓度:

其中参数N_c称为导带有效状态密度,N_c=2\left ( \frac{2\pi m_n^{*}kT}{h^2} \right )^{3/2}m_n^{*}为电子有效质量。

同理,可以得到价带空穴的热平衡浓度:

其中参数N_v 称为价带有效状态密度,N_v=2\left ( \frac{2\pi m_p^{*}kT}{h^2} \right )^{3/2}m_p^{*}为空穴有效质量。

在这里,需要知道N_cN_v的数量级均为10^{19}cm^{-3}。给定温度下的给定半导体,N_cN_v均为常数。

2.5.3 本征载流子浓度

本征半导体中,导带中的电子浓度值等千价带中的空穴浓度值。本征半导体的费米能级称为本征费米能级E_{Fi}。因为本征半导体中电子浓度n_i和空穴浓度p_i有关系n_i=p_i,所以:

其中E_g为禁带宽度。对于给定的半导体材料,温度恒定时n_i为恒定值,与费米能级无关。本征载流子浓度强烈依赖于温度变化。

2.5.4 本征费米能级位置

我们已经定性地证明了本征半导体的费米能级位于禁带中央附近。更精确地有:

若电子和空穴的有效质量相等,则本征费米能级精确位于禁带中央。空穴有效质量大时,本征费米能级高于禁带中央,电子有效质量大时,本征费米能级低于禁带中央。 

2.5.5 杂质半导体热平衡电子浓度和热平衡空穴浓度

热平衡电子浓度:

热平衡空穴浓度:

E_F> E_{Fi}时,电子浓度高于空穴浓度,是n型半导体,也即n_0> n_i> p_0

E_F< E_{Fi}时,空穴浓度高于电子浓度,是p型半导体,也即n_0< n_i< p_0

无论如何,对于热平衡下的半导体,有:

 2.5.6 费米能级的位置

T=0K时,n型材料的费米能级处于导带底部边缘能量E_c和施主能级E_d中间,p型材料的费米能级处于受主能级E_a和价带顶部边缘的能量E_v中间。

定量地有:

以及本征费米能级和费米能级的关系:

以上式子中的N_cN_v在2.5.2中已定义,n_0p_0的值由下式给出:

容易知道,其中的N_aN_d分别表示受主杂质原子密度和施主杂质原子密度,单位为cm^{-3}。以N表示的符号大都表示密度,以np表示的符号大都表示浓度,但是它们的单位都是cm^{-3},所以它们经常混在一起出现。

此外,应当注意,对于杂质补偿p型半导体,少数载流子电子的浓度由下式确定:

在多数载流子的浓度已经确定的条件下,可用式n_0 p_0= n_i^{2}来计算少数载流子的浓度。

2.5.7 准费米能级

若半导体中产生了过剩载流子,则半导体就不再处于热平衡状态,且费米能级会发生改变。为了描述非平衡状态,我们定义电子和空穴的准费米能级为E_{Fn}E_{Fp}。总电子浓度和总空穴浓度是准费米能级的函数:

其中\delta n\delta p分别是过剩电子的浓度和过剩空穴的浓度。

2.6 小结

本书中,费米能级最初是在费米-狄拉克分布函数中引出的,该分布描述的是电子占据的量子态占总量子态的比例,费米能级在这个分布中的描述的是,能量为费米能级大小的量子态被占据的概率是1/2。如果E-E_F\gg kT,那么就可以将上述分布近似为麦克斯韦-玻尔兹曼分布。

接下来一系列的场景中使用到了费米能级。最基础的是电子和空穴的平衡分布,分别记为n\left ( E \right )p\left ( E \right )。对分布分别积分并使用麦克斯韦-玻尔兹曼近似,得到热平衡电子浓度和热平衡空穴浓度,分别记为n_0p_0。对于杂质半导体来说,热平衡电子浓度和空穴浓度也记为n_0p_0,但是计算方法不同,杂质半导体的计算公式用到了本征载流子浓度n_i。不要忘了总有关系n_0 p_0= n_i^{2}

然后是本征费米能级的定义方法,我们计算其与禁带中央位置的差,发现差为对数关系。计算热力学零度情况下的费米能级时,我们知道n型半导体中费米能级靠近导带,且处于施主能级和导带能级中间,所以n型半导体中定义方法是导带底能量减去费米能级得到一个对数关系;而在p型半导体中是费米能级减去价带顶能量得到一个对数关系。本征费米能级减去费米能级也是得到一个对数关系。最后是准费米能级,这针对的是非平衡半导体,产生过剩载流子的状态,总电子浓度和总空穴浓度分别是两个对数关系式。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值