0 写这篇记录的初衷
最近在学习Donald A. Neamen的《半导体物理与器件(第四版)》的时候,发现贯穿整本书的公式都是由一些原始公式演化而来的,但是书中符号繁多、标注和表述不符合我的阅读习惯,导致学习过一遍后并不能很好地理解,因此通过这篇记录梳理书中的逻辑。
1 薛定谔波动方程
1.1 薛定谔波动方程是什么?
薛定谔波动方程是量子力学的核心方程之一,用来描述微观粒子(如电子、光子等)的量子状态及其随时间的演化。在经典物理中,我们用牛顿定律来描述宏观物体的运动,而在量子力学中,薛定谔方程起到了类似的作用,用以描述粒子的运动和行为。
1.2 薛定谔波动方程能做什么?
-
描述微观粒子的行为:在量子力学中,粒子被认为具有波动性,波函数 ψ\psiψ 描述了粒子在空间中的概率分布。通过解薛定谔方程,我们可以获得粒子在不同位置和时间上出现的概率。
-
预测粒子的演化:薛定谔方程提供了一种工具来预测粒子随时间如何变化。通过解含时薛定谔方程,我们可以了解粒子波函数随时间的演化,进而预测未来状态。
-
确定能量:在定态薛定谔方程中,通过解方程可以得到粒子的可能能量状态(也称为能级),以及相应的波函数。这对于描述如电子在原子中的能级、粒子在势阱中的行为等具有重要意义。
1.3 薛定谔波动方程的形式
一维非相对论的薛定谔波动方程表示为:
其中,为波函数,描述了系统在时间和位置的状态。为与时间无关的势场函数,是粒子的质量,是虚数单位。
可以将波函数写为如下形式,包括与时间有关的部分和与坐标有关(与时间无关)的部分:
其中与时间有关的项可以解出:
与时间无关的项可以写为:
为粒子的总能量,有或者。
最常用的薛定谔波动方程的形式如下:
修正普朗克常数值为。需要记住这个式子,它将被应用在很多地方。通过这个式子可以解出。
最终,将与相乘,即得波函数。
1.4 薛定谔波动方程的应用
1.4.1 自由空间中的粒子
自由空间中,没有外力作用于粒子,那么势函数为常数,而且。简单来说可以认为,那么根据(1.1):
这个微分方程的解为:
如果定义波数,那么解也可以写为:
而与时间有关的函数结果为(1.0),由于为与时间有关的部分和与坐标有关(与时间无关)的部分的乘积,那么上述解与(1.0)的乘积即为整个波动方程的结果:
该结果是一个行波,就是说自由空间中的粒子运动表现为行波。系数为的项表示方向为的波,系数为的项为方向为的波,系数由边界条件确定。
行波(Traveling Wave)是波动的一种形式,它指的是波形以一定的速度在空间中传播,将能量从一个位置传递到另一个位置,而介质中的质点只是在其平衡位置附近作周期性振动,并不随波一起移动。行波是波动最基本、最常见的形式,广泛存在于各种物理现象中,例如声波、水波、电磁波等。
可以把行波想象成海中的波浪,它们从远方向岸边传播,波峰和波谷不断前进。波浪中每一点的水上下振动,但波形本身向前传播,带动能量的传递。
如果想描述沿方向运动的粒子,则系数。
自由粒子的能量、波长、动量都有明确意义。
1.4.2 无限深势阱中的粒子
与上一节不同,这是束缚态粒子的情况。势函数是位置的函数,如下图所示:
因为粒子能量是有限的,那么在区域I和III中波函数必须为零,或者,意为粒子不可能穿越无限深势阱,不可能出现在区域I和III中,在这两个区域里发现粒子的概率为0。
于是只需要考虑区域II,在该区域,与时间无关的薛定谔波动方程写为:
看以看出其实和上一节的式子一样。可以解出:
应用边界条件在处有,该式当时成立,参数为量子数。通过应用这个边界条件,我们引入了量子数,这导致后面求出的结果会是分立值(能量的量子化)。最终上式表示为:
此表达式为驻波表达式,代表电子处于无限深势阱中。 可以说,行波代表自由粒子,而驻波代表束缚态粒子。如果令,上式也可写为。
粒子的总能量表示为:
是分立的值。束缚态粒子能量的量子化是一个极其重要的结论。
1.4.3 阶跃势垒中的粒子
在阶跃势中,我们让粒子从开始沿着方向流动,入射到阶跃势垒上。粒子总能量小于势垒的高度,即。阶跃势的函数如下图:
在区域I中势函数,则有:
这和上述两节讨论过的任何势函数为0的情况一致,方程通解也一致,只是系数符号稍作改变:
其中常量也与前面的讨论完全一样。在上式中,第一项代表入射波,第二项代表反射波,二者都是行波。
在区域II中,势函数,则有:
这是那个很重要的关系式(1.1),由于已经知道,所以式子中写为。解出波函数为:
其中常数,应用边界条件可知系数。
在的情况下,不为零,那么在区域II中发现粒子的概率密度函数也不为零,这表示入射粒子有一定的概率会穿过势垒到达区域II中。
在阶跃势函数中,定义反射系数,由于入射速度和反射速度数值相等,则反射系数为:
反射系数为反射流相对于入射流的比率。通过计算可以知道,这表示所有的粒子流入射到势垒上将全部被反射回来,虽然入射粒子有一定的概率会穿过势垒到达区域II中,但最终必定完全返回区域I中。
1.4.4 矩形势垒中的粒子
矩形势垒如下图,仍然关注入射粒子能量的情况:
三个区域中与时间无关的薛定谔方程的解分别为:
由于推导过程和前述三个小节一致,这里直接给出了结果。常数和也与前面一致。
下面解释三个式子中的系数如何保留。对于第三个式子,系数代表负方向的行波,但是在区域III,没有势场可以让粒子反射,于是。对于第二个式子,由于势垒宽度有限,应当保留两个指数项,或者说每一项都是有界的。在第一个式子中,既存在入射也存在反射粒子,所以保留所有指数项,如果将作为已知条件,可以使用四个边界条件:和求得、、、这四个系数。
在矩形势垒中,定义透射系数,表示为区域III中的透射粒子流占区域I中入射粒子流的比率,由于使入射和透射速度相等,则透射系数为:
通过考虑的特殊情况,计算出,这说明:当粒子撞击到势垒时,存在有限的概率穿过势垒到达区域III。这叫做隧道效应。
1.4.5 克勒尼希-彭尼模型
紧密排列在一维阵列中的很多原子的势函数如下:
克勒尼希-彭尼模型简化了这一势函数,是理想化的:
我们关注的是的情况,此时粒子被束缚在晶体中,处于势阱中,并且有可能发生隧穿。根据布洛赫数学定理,所有周期性变化的势能函数的单电子势函数必须写为:
其中是以为周期的函数。对于波动方程的全解,其包含两个部分:
或者合并指数项写为:
这就是电子在单晶材料中的运动的行波解。其振幅是一个周期函数。
为了确定参数、总能量和势函数之间的关系,在此简单阐述思路:在区域I内,对(1.4.5.1)求二阶导,带入与时间无关的薛定谔波动方程;在区域II内,同样求二阶导应用于与时间无关的薛定谔波动方程。通过这两步,分别定义了两个参数,与能量有关的参数:
和与势函数有关的参数:
需要注意是虚数。通过应用边界条件,可以解得:
这个式子将参数与总能量和势函数分别通过参数和联系起来。这个式子没有解析解,可以利用图解法观察三者之间的关系。
在用图解法观察三者之间的关系之前,我们先看自由粒子参数与总能量的关系。自由粒子意味着的特殊情况,可以解得,这是一个抛物线关系的关系,如图所示:
前面我们已经得到自由粒子的动量有明确意义,所有横轴是或。
而由于能量是不连续的,下图显示了允带和禁带的概念:
进行周期性平移,得到关系的简约布里渊区或简约空间曲线:
1.5 小结
最重要的是知道波函数表示系统在时间和位置的状态。但是在大部分时候我们都是基于(1.1)先写出与时间无关的薛定谔方程的解。
然后在自由空间粒子情况下,我们将(1.1)与(1.0)相乘得到整个波动、的结果;
在无限深势阱(束缚态)粒子情况下,仅使用(1.1)来分析,并得到能量量子化结论;
在阶跃势垒粒子情况下,仅使用(1.1)来分析,并得到反射系数;
在矩形势垒粒子情况下,仅使用(1.1)来分析,并得到透射系数,隧道效应;
在克勒尼希-彭尼模型中,得到了空间曲线图,简约布里渊区。
2 费米能级
2.1 费米能级是怎么来的?
涉及大量粒子时,我们感兴趣这些粒子作为整体的统计学状态。定义密度数代表单位体积单位能量的粒子数,定义状态密度函数代表单位体积单位能量的量子状态。函数定义为二者的比值,表示能量为的量子态被电子占据的可能性,称为费米-狄拉克分布函数:
该分布函数的另一种意义是被电子填充的量子态占总量子态的比率。分布函数中的称为费米能级。
此外,就是空状态的概率,其与关于费米能级对称。
2.2 用图像理解费米能级
考虑,的情况,这导致;而,时,导致。图像如下:
这直观地说明, 时,电子都处在最低能量状态上,所有的量子态被完全占据,体现为;而所有的量子态被占据的可能性为零,体现为。这样一来,在时,费米能级可以确定电子的统计学分布,但并不一定对应一个允带能级。
考虑温度逐渐升高的情况,电子就会得到一定的热能,一部分电子就会跃入更高的能级中,也就意味着有效能量状态中的电子分布发生了改变。时,令可以得到:
这个式子的意思是,能量为的量子态被占据的可能性为1/2。
为了更好理解这个1/2的含义,这里做出一些解释:
在绝对零度时,所有能量低于费米能级的态都是被电子占据的,而高于费米能级的态都是空的。因此在 0 K 时,费米能级上的态被占据的概率是 1 或 0,取决于它在费米能级之上还是之下。
当温度大于 0 K 时,电子会因热激发而从低能态跃迁到高能态。此时,即使是处于费米能级的电子,也有可能跃迁到更高的能量态,导致费米能级上的态不再总是被占据,而是有 50% 的概率被电子占据,50% 的概率是空的。
下图显示了随着温度升高,费米-狄拉克分布函数的变化(假设费米能级不随着温度变化):
从图中也能看出,时,高于费米能级的能量状态将被一些跃迁的电子占据从而使概率不为零,而低于费米能级的一些能量状态为空。
2.3 简要定义费米能级
费米能级是描述费米子(如电子)在绝对零度(0 K)下,系统中电子可以占据的最高能量状态。在绝对零度时,所有能量低于费米能级的状态都被电子完全占据,而高于费米能级的状态完全空闲。
2.4 麦克斯韦-玻尔兹曼近似
我们在讨论费米能级是怎么来的过程中提到了费米-狄拉克分布。考虑的情况,这时费米-狄拉克分布中的分母的指数项远远大于1,于是我们忽略这个1,从而费米-狄拉克分布可以写为:
这个式子就是费米-狄拉克分布的麦克斯韦-玻尔兹曼近似,或叫做简约玻尔兹曼近似。
2.5 在哪里用得到费米能级?
由于费米能级一开始是在费米-狄拉克分布函数中出现的,所以这一节当中包含了用得到费米能级或者费米-狄拉克分布的一些场景。
2.5.1 电子和空穴的平衡分布
导带电子关于能量的分布为导带中允许量子态的密度与某个量子态被电子占据的概率的乘积:
价带空穴的分布为价带允许量子态的密度与某个量子态不被电子占据的概率的乘积:
2.5.2 热平衡电子浓度和热平衡空穴浓度
对在能量范围上积分,积分下限为,上限为正无穷,并使用玻尔兹曼近似,就得到导带电子的热平衡浓度:
其中参数称为导带有效状态密度,,为电子有效质量。
同理,可以得到价带空穴的热平衡浓度:
其中参数 称为价带有效状态密度,,为空穴有效质量。
在这里,需要知道和的数量级均为。给定温度下的给定半导体,和均为常数。
2.5.3 本征载流子浓度
本征半导体中,导带中的电子浓度值等千价带中的空穴浓度值。本征半导体的费米能级称为本征费米能级。因为本征半导体中电子浓度和空穴浓度有关系,所以:
其中为禁带宽度。对于给定的半导体材料,温度恒定时为恒定值,与费米能级无关。本征载流子浓度强烈依赖于温度变化。
2.5.4 本征费米能级位置
我们已经定性地证明了本征半导体的费米能级位于禁带中央附近。更精确地有:
若电子和空穴的有效质量相等,则本征费米能级精确位于禁带中央。空穴有效质量大时,本征费米能级高于禁带中央,电子有效质量大时,本征费米能级低于禁带中央。
2.5.5 杂质半导体热平衡电子浓度和热平衡空穴浓度
热平衡电子浓度:
热平衡空穴浓度:
当时,电子浓度高于空穴浓度,是n型半导体,也即。
当时,空穴浓度高于电子浓度,是p型半导体,也即。
无论如何,对于热平衡下的半导体,有:
2.5.6 费米能级的位置
在时,n型材料的费米能级处于导带底部边缘能量和施主能级中间,p型材料的费米能级处于受主能级和价带顶部边缘的能量中间。
定量地有:
以及本征费米能级和费米能级的关系:
以上式子中的和在2.5.2中已定义,和的值由下式给出:
容易知道,其中的和分别表示受主杂质原子密度和施主杂质原子密度,单位为。以表示的符号大都表示密度,以、表示的符号大都表示浓度,但是它们的单位都是,所以它们经常混在一起出现。
此外,应当注意,对于杂质补偿p型半导体,少数载流子电子的浓度由下式确定:
在多数载流子的浓度已经确定的条件下,可用式来计算少数载流子的浓度。
2.5.7 准费米能级
若半导体中产生了过剩载流子,则半导体就不再处于热平衡状态,且费米能级会发生改变。为了描述非平衡状态,我们定义电子和空穴的准费米能级为和。总电子浓度和总空穴浓度是准费米能级的函数:
其中和分别是过剩电子的浓度和过剩空穴的浓度。
2.6 小结
本书中,费米能级最初是在费米-狄拉克分布函数中引出的,该分布描述的是电子占据的量子态占总量子态的比例,费米能级在这个分布中的描述的是,能量为费米能级大小的量子态被占据的概率是1/2。如果,那么就可以将上述分布近似为麦克斯韦-玻尔兹曼分布。
接下来一系列的场景中使用到了费米能级。最基础的是电子和空穴的平衡分布,分别记为和。对分布分别积分并使用麦克斯韦-玻尔兹曼近似,得到热平衡电子浓度和热平衡空穴浓度,分别记为和。对于杂质半导体来说,热平衡电子浓度和空穴浓度也记为和,但是计算方法不同,杂质半导体的计算公式用到了本征载流子浓度。不要忘了总有关系。
然后是本征费米能级的定义方法,我们计算其与禁带中央位置的差,发现差为对数关系。计算热力学零度情况下的费米能级时,我们知道n型半导体中费米能级靠近导带,且处于施主能级和导带能级中间,所以n型半导体中定义方法是导带底能量减去费米能级得到一个对数关系;而在p型半导体中是费米能级减去价带顶能量得到一个对数关系。本征费米能级减去费米能级也是得到一个对数关系。最后是准费米能级,这针对的是非平衡半导体,产生过剩载流子的状态,总电子浓度和总空穴浓度分别是两个对数关系式。