【文献笔记】Human reliability assessment (HRA) in maintenance of production process: a case study

Aalipour, M., Ayele, Y.Z. & Barabadi, A. Human reliability assessment (HRA) in maintenance of production process: a case study. Int J Syst Assur Eng Manag 7, 229–238 (2016). https://doi.org/10.1007/s13198-016-0453-z


写在前面:

本文中一些术语的解释

What are performance shaping factors? - ergonomicsblog uxblog

这篇文章旨在对比三种HRA方法的应用结果,并获得一致性结论。文章中没有关于三种方法的使用细节(如发展、背景、步骤)描述。 最好,作者的remarks很有参考意义。

其他的HRA方法:

THERP, Swain

HCR, Hannaman

SLIM, Embrey

OAT, Hall

这些理论的发展和使用参见《数字化核电厂人因可靠性》,张力等著 


Abstract

人的可靠性对任何生产过程的维护性能、安全性和成本效益都有很大贡献。为了提高人的可靠性,应确定人为错误的原因,并量化人为错误的概率。

        对人为错误(human error)的分析是随个体案例而变的(case-specific);应当考虑到该领域的背景。 本文的主旨是使用三种最常见的HRA技术——人为错误评估和减少技术(human error assessment and reduction technique)、标准化工厂分析风险人为可靠性(standardized plant analysis risk-human reliability)和贝叶斯网络(Bayesian network)——来估计人为错误概率,然后检查所获得结果的一致性。案例研究结果表明,维修活动中人为失误的主要原因是时间压力、缺乏经验和程序不当。此外,通过使用这三种技术获得的人为错误的概率是相似和一致的。

1 Introduction

每年数十亿美元用于工厂的维护和运营。可以通过在设计和运营阶段应用人为因素原理来显著降低成本。复杂工业技术的维护过程特别容易受到人为错误的影响,人为错误对生产工厂的维护成本构成了重要影响。人为失误是工业中50%至90%事故的主要原因。

因此,为了减少人为错误的后果并确保有效的维护过程,准确估计潜在的人为错误及其在维护执行过程中发生的概率至关重要。它有助于制定一项计划,确保改进维护/维修程序和工作场所人体工程学,以及改进操作步骤。因此,它提高了维护性能并显著降低了维护成本。

一般来说,HRA涉及使用定性和定量方法来评估和量化人类对风险状况的贡献。 

根据作者参阅的文献,大部分现有方法都是宽泛的、针对核工业的方法,其他行业如采矿业和海上工业,具有其自身独特的挑战和自身的行为形成因子(performance-shaping factors)以及行为影响因子(performance-influencing factors),这些因素可能与核工业完全不同。这种方法的主要问题是传统方法是否能够为这些行业提供准确的人类可靠性估计。为了回答这个关键的验证问题,进行独立的验证实验至关重要。此外,一旦给定的技术达到了一定程度的预测有效性,下一个问题是这种技术是否能够持续产生有效和准确的结果。为了验证这些方法和人为错误概率(human error probabilities)的值,通常必须使用专家的意见和数据库

此外,至关重要的是通过使用一种以上的方法来执行HRA,从而检查人为错误概率估计结果的一致性。文献中对几种方法进行了比较和研究,以检验一些已开发的HRA方法的有效性和一致性。

因此,本文的目的是通过使用一家电缆制造公司作为例证案例研究,检验三种HRA方法HEART、SPAR-H和BN的一致性。此外,本文还确定了电缆制造业维修活动中人为失误的原因,并计算了人为失误的概率。此外,本文研究了人员培训等特定因素的改进如何对降低人为错误的概率和维护成本做出积极贡献。 

2 Background: a bird's eye view of HRA 

HRA通常有三个基本功能:(1)识别人为错误(the identification of human errors),(2)预测其可能性(the prediction of their likelihood),以及(3)在需要时降低其可能性(the reduction of their likelihood if required)。

人因可靠性(human reliability)被描述为人类圆满完成特定任务的概率。任务可能与设备维修、设备或系统操作、安全行动、分析以及其他影响系统性能的人类行动有关。人为失误(human error)与人因可靠性相反,人为失误概率(human error probability),记作P\left ( HE \right ),被定义为:

 P\left ( HE \right )=\frac{N_{E}}{N_{EO}}

其中N_{E}表示失误的数量,

### RT-DETRv3 网络结构分析 RT-DETRv3 是一种基于 Transformer 的实时端到端目标检测算法,其核心在于通过引入分层密集正监督方法以及一系列创新性的训练策略,解决了传统 DETR 模型收敛慢和解码器训练不足的问题。以下是 RT-DETRv3 的主要网络结构特点: #### 1. **基于 CNN 的辅助分支** 为了增强编码器的特征表示能力,RT-DETRv3 引入了一个基于卷积神经网络 (CNN) 的辅助分支[^3]。这一分支提供了密集的监督信号,能够与原始解码器协同工作,从而提升整体性能。 ```python class AuxiliaryBranch(nn.Module): def __init__(self, in_channels, out_channels): super(AuxiliaryBranch, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1) self.bn = nn.BatchNorm2d(out_channels) def forward(self, x): return F.relu(self.bn(self.conv(x))) ``` 此部分的设计灵感来源于传统的 CNN 架构,例如 YOLO 系列中的 CSPNet 和 PAN 结构[^2],这些技术被用来优化特征提取效率并减少计算开销。 --- #### 2. **自注意力扰动学习策略** 为解决解码器训练不足的问题,RT-DETRv3 提出了一种名为 *self-att 扰动* 的新学习策略。这种策略通过对多个查询组中阳性样本的标签分配进行多样化处理,有效增加了阳例的数量,进而提高了模型的学习能力和泛化性能。 具体实现方式是在训练过程中动态调整注意力权重分布,确保更多的高质量查询可以与真实标注 (Ground Truth) 进行匹配。 --- #### 3. **共享权重解编码器分支** 除了上述改进外,RT-DETRv3 还引入了一个共享权重的解编码器分支,专门用于提供密集的正向监督信号。这一设计不仅简化了模型架构,还显著降低了参数量和推理时间,使其更适合实时应用需求。 ```python class SharedDecoderEncoder(nn.Module): def __init__(self, d_model, nhead, num_layers): super(SharedDecoderEncoder, self).__init__() decoder_layer = nn.TransformerDecoderLayer(d_model=d_model, nhead=nhead) self.decoder = nn.TransformerDecoder(decoder_layer, num_layers=num_layers) def forward(self, tgt, memory): return self.decoder(tgt=tgt, memory=memory) ``` 通过这种方式,RT-DETRv3 实现了高效的目标检测流程,在保持高精度的同时大幅缩短了推理延迟。 --- #### 4. **与其他模型的关系** 值得一提的是,RT-DETRv3 并未完全抛弃经典的 CNN 技术,而是将其与 Transformer 结合起来形成混合架构[^4]。例如,它采用了 YOLO 系列中的 RepNCSP 模块替代冗余的多尺度自注意力层,从而减少了不必要的计算负担。 此外,RT-DETRv3 还借鉴了 DETR 的一对一匹配策略,并在此基础上进行了优化,进一步提升了小目标检测的能力。 --- ### 总结 综上所述,RT-DETRv3 的网络结构主要包括以下几个关键组件:基于 CNN 的辅助分支、自注意力扰动学习策略、共享权重解编码器分支以及混合编码器设计。这些技术创新共同推动了实时目标检测领域的发展,使其在复杂场景下的表现更加出色。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值