【文献笔记】Human reliability assessment (HRA) in maintenance of production process: a case study

Aalipour, M., Ayele, Y.Z. & Barabadi, A. Human reliability assessment (HRA) in maintenance of production process: a case study. Int J Syst Assur Eng Manag 7, 229–238 (2016). https://doi.org/10.1007/s13198-016-0453-z


写在前面:

本文中一些术语的解释

What are performance shaping factors? - ergonomicsblog uxblog

这篇文章旨在对比三种HRA方法的应用结果,并获得一致性结论。文章中没有关于三种方法的使用细节(如发展、背景、步骤)描述。 最好,作者的remarks很有参考意义。

其他的HRA方法:

THERP, Swain

HCR, Hannaman

SLIM, Embrey

OAT, Hall

这些理论的发展和使用参见《数字化核电厂人因可靠性》,张力等著 


Abstract

人的可靠性对任何生产过程的维护性能、安全性和成本效益都有很大贡献。为了提高人的可靠性,应确定人为错误的原因,并量化人为错误的概率。

        对人为错误(human error)的分析是随个体案例而变的(case-specific);应当考虑到该领域的背景。 本文的主旨是使用三种最常见的HRA技术——人为错误评估和减少技术(human error assessment and reduction technique)、标准化工厂分析风险人为可靠性(standardized plant analysis risk-human reliability)和贝叶斯网络(Bayesian network)——来估计人为错误概率,然后检查所获得结果的一致性。案例研究结果表明,维修活动中人为失误的主要原因是时间压力、缺乏经验和程序不当。此外,通过使用这三种技术获得的人为错误的概率是相似和一致的。

1 Introduction

每年数十亿美元用于工厂的维护和运营。可以通过在设计和运营阶段应用人为因素原理来显著降低成本。复杂工业技术的维护过程特别容易受到人为错误的影响,人为错误对生产工厂的维护成本构成了重要影响。人为失误是工业中50%至90%事故的主要原因。

因此,为了减少人为错误的后果并确保有效的维护过程,准确估计潜在的人为错误及其在维护执行过程中发生的概率至关重要。它有助于制定一项计划,确保改进维护/维修程序和工作场所人体工程学,以及改进操作步骤。因此,它提高了维护性能并显著降低了维护成本。

一般来说,HRA涉及使用定性和定量方法来评估和量化人类对风险状况的贡献。 

根据作者参阅的文献,大部分现有方法都是宽泛的、针对核工业的方法,其他行业如采矿业和海上工业,具有其自身独特的挑战和自身的行为形成因子(performance-shaping factors)以及行为影响因子(performance-influencing factors),这些因素可能与核工业完全不同。这种方法的主要问题是传统方法是否能够为这些行业提供准确的人类可靠性估计。为了回答这个关键的验证问题,进行独立的验证实验至关重要。此外,一旦给定的技术达到了一定程度的预测有效性,下一个问题是这种技术是否能够持续产生有效和准确的结果。为了验证这些方法和人为错误概率(human error probabilities)的值,通常必须使用专家的意见和数据库

此外,至关重要的是通过使用一种以上的方法来执行HRA,从而检查人为错误概率估计结果的一致性。文献中对几种方法进行了比较和研究,以检验一些已开发的HRA方法的有效性和一致性。

因此,本文的目的是通过使用一家电缆制造公司作为例证案例研究,检验三种HRA方法HEART、SPAR-H和BN的一致性。此外,本文还确定了电缆制造业维修活动中人为失误的原因,并计算了人为失误的概率。此外,本文研究了人员培训等特定因素的改进如何对降低人为错误的概率和维护成本做出积极贡献。 

2 Background: a bird's eye view of HRA 

HRA通常有三个基本功能:(1)识别人为错误(the identification of human errors),(2)预测其可能性(the prediction of their likelihood),以及(3)在需要时降低其可能性(the reduction of their likelihood if required)。

人因可靠性(human reliability)被描述为人类圆满完成特定任务的概率。任务可能与设备维修、设备或系统操作、安全行动、分析以及其他影响系统性能的人类行动有关。人为失误(human error)与人因可靠性相反,人为失误概率(human error probability),记作P\left ( HE \right ),被定义为:

 P\left ( HE \right )=\frac{N_{E}}{N_{EO}}

其中N_{E}表示失误的数量,

Removing Duplicates Duplicate records can be a major issue in any data set, and GeoNames is no exception. In order to properly clean the data and prepare it for natural language processing, we needed to identify and remove duplicate records. Our approach to identifying duplicates was to use a combination of fuzzy matching techniques and manual review. We first used a Python library called FuzzyWuzzy to identify records that were likely duplicates based on their similarity in name, latitude, and longitude. FuzzyWuzzy uses a string matching algorithm called Levenshtein distance to calculate the similarity between two strings. We set a threshold for similarity and flagged records that exceeded that threshold as potential duplicates. After using FuzzyWuzzy to identify potential duplicates, we manually reviewed each flagged record to confirm whether or not it was a true duplicate. In some cases, records with similar names and coordinates were actually distinct locations (e.g. two different streets with the same name in different cities). In other cases, records with very different names and coordinates were actually duplicates (e.g. the same city listed under two slightly different names). Once we had identified and confirmed duplicates, we chose to keep only the record with the most complete information. For example, if one record had a population field filled in while the other did not, we kept the record with the population field. In cases where both records had the same level of completeness, we chose to keep the record with the more recent update date. Overall, we were able to identify and remove over 200,000 duplicate records from the GeoNames data set. This significantly improved the accuracy and reliability of the data, making it more useful for natural language processing tasks.
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值