A method of human reliability analysis and quantification for space missions based on a Bayesian network and the cognitive reliability and error analysis method
摘要
载人航天过程中的人为可靠性分析至关重要,因为在极端的太空环境中很容易出现人为失误,并可能对任务构成巨大的潜在风险。尽管人类可靠性分析(HRA)有各种方法,但所有这些方法都是基于人类在地面上的行为。因此,为了适当地分析航天飞行中的人为可靠性,本文提出了一种基于空间的HRA方法来量化航天任务的人为失误概率(HEP)。本研究讨论了空间环境特有的性能塑造因素,而不是地面性能塑造因素(PSF),并将相应的评估系统集成到所提出的方法中,以充分考虑空间任务的特点。
基于认知可靠性和误差分析方法(CREAM)构建了贝叶斯网络,以对这些基于空间的PSF及其相关性进行建模。通过结合贝叶斯网络,该方法将HEP估计过程转换为概率计算,从而克服了传统HRA方法在解决复杂空间环境的不确定性方面的缺点。更重要的是,通过获取更多信息,可以通过这种概率计算来动态更新HEP估计。通过研究两个例子并评估国际空间站进入程序的HEP,从数学上和实际场景中验证了所开发方法的可行性和优越性。
1 引言
太空飞行和探索计划以及宇航员在太空中的活动的重要性在世界范围内得到了越来越多的认可。为了确保航天任务和宇航员的安全,人们对航天安全进行了大量研究。然而,随着复杂系统可靠性的不断提高,人为错误已成为降低系统可靠性的最关键因素,这可能导致任务失败或灾难性事故。美国国家航空航天局(NASA)表示,在1990年至1993年间记录的所有航天事故中,80%至85%与人为失误有关。由于人为失误的高风险和灾难性影响,许多研究人员研究了太空环境及其对人类表现的影响。Stefan Schneider和他的同事报告说,生活在极端环境中会引发许多生理和心理压力,其中任何一种都可能阻碍任务的成功和安全。根据Kanas和Manzey的说法,太空中出现的神经认知和神经行为问题主要由4种不同类型的因素引起:身体因素、与宜居性相关的因素、心理因素以及社会或人际因素。由于未来人类的太空任务可能会持续很长一段时间,在太空的极端环境中生活和工作预计会对人类参与者产生各种影响,这些影响将不可避免地影响人类的可靠性。
欧洲航天局和美国国家航空航天局目前正在调查与人类在太空飞行中的表现有关的工作。 欧洲航天局规定了一些要求,并发布了在长期任务中监测心理表现的建议。美国国家航空航天局不仅将人类表现的下降描述为未来太空探索的主要风险之一,还强调需要开发足够的仪器来准确可靠地检测这种认知表现的下降。因此,开发一种人因可靠性分析方法来预测和减轻载人航天中的人为失误是至关重要的。
由于人的可靠性在许多领域都很重要,HRA方法的发展越来越受到关注。在HRA中,性能塑造因子(PSF)是操作员执行任务的条件,PSF可以增加或减少人为错误的概率。已经进行了一项研究,以量化低功率和停堆操作HRA的PSF权重。为了关注应急管理中最紧迫和最重要的因素,提出了一种结合D数理论、决策试验和评估实验室(D-DEMATEL)程序来识别关键成功因素的新方法。结合层次分析法,D数也被用于HRA中的依赖性评估。此外,贝叶斯网络作为HRA的强大工具,已在许多领域得到应用。Mkrtchyan,Podofilini系统地回顾了BN在HRA中的应用和差距。此外,还评估了5种在有限判断下构建贝叶斯网络条件概率表的方法。尽管已经开发了许多类型的HRA方法,但大多数现有的方法都源于核电站的运行。然而,源自地面工作环境的人类PSF并不能代表太空飞行的各种独特条件,也没有开发出充分考虑特定空间环境特征的合适的HRA方法或技术来评估和减少太空任务中的人为错误。
2006年,美国国家航空航天局主办了一次技术交流会议,从现有的50多种HRA方法中确定适用于美国国家航空宇航局太空任务的最合适的HRA方法。会议的结果是,建议使用一种具有代表性的第二代HRA方法,即“认知可靠性和误差分析方法”(CREAM),用于分析和预测人类在太空任务中的表现。然而,CREAM最初也是为地面HRA开发的。因此,它没有考虑长期太空飞行所特有的人类PSF,如微重力、加速度、振动和隔离。此外,CREAM没有捕捉到空间环境的复杂性和可变性所产生的不确定性,这必然会影响其评估结果。由于在复杂和不确定的空间环境中执行任务的信息和统计数据通常不可用,因此很难通过确定性计算获得人为错误概率(HEP)的评估,这需要在不考虑不确定性的情况下确定PSF评级。
本文分析了航天任务特有的特征,并定义了空间环境特有的PSF。从而获得了一个基于空间的PSF的评估系统,并将其纳入所提出的方法中。 此外,构建了一个基于CREAM的BN来对基于空间的PSF及其相关性进行建模。通过将所提出的天基PSF评估系统与所开发的BN相结合,开发了一种天基HRA方法,该方法可用于(1)量化太空任务的HEP,同时通过分析天基PSF充分考虑太空环境对人类的影响,(2)克服由于缺乏关于天基任务的可靠数据而产生的不确定性所带来的困难,以及(3)提供可以动态更新的即时和可信的HEP估计。
为了实现上述目标,第2节介绍了有关CREAM和BN的相关研究。在第3节中,回顾了以往针对太空环境和太空任务的人类PSF研究,并构建了一个基于BN的动态评估系统。 然后,为了克服将传统的CREAM应用于航天HRA时遇到的困难,通过将所开发的BN与所识别的基于空间的PSF相结合,开发了一种基于空间的人为误差量化方法。在第4节中,通过研究2个数值示例并将该方法应用于国际空间站(ISS)进入程序,证明了所提出方法的可行性和优越性能。第5节总结了本文提出的方法的主要贡献,并讨论了未来研究的潜在方向。
2 相关研究工作
2.1 认知可靠性误差及其分析方法CREAM
由Hollnagel提出的CREAM,是HEP评估的第二代HRA方法之一,能够正确考虑HEP评估过程中对任务的上下文影响。与其他第二代方法类似,CREAM认为操作故障取决于执行操作的条件。对于事故分析,该方法有两个版本。扩展版本在细粒度认知功能水平上运行,而被称为筛选技术的基本方法是基于对常见性能条件(CPC)的分析。通常,该方法的较简单版本由以下描述的4个步骤组成。
- 分析员收集有关被评估情况的必要信息,如工作条件、可用时间、一天中的时间等。
- 根据收集的信息,每个CPC可以被评估为“积极、消