cnn lstm预测_CNN LSTM预测每日酒店取消

cnn lstm预测

背景:LSTM与CNN (Background: LSTMs vs. CNNs)

An LSTM (long-short term memory network) is a type of recurrent neural network that allows for the accounting of sequential dependencies in a time series.

LSTM(长期短期记忆网络)是一种递归神经网络,可以考虑时间序列中的顺序依存关系。

Given that correlations exist between observations in a given time series (a phenomenon known as autocorrelation), a standard neural network would treat all observations as independent, which is erroneous and would generate misleading results.

假设给定时间序列中的观测值之间存在相关性(一种称为自相关的现象),则标准神经网络会将所有观测值视为独立的,这是错误的,并且会产生误导性的结果。

A convolutional neural network is one that applies a process known as convolution in determining the relationships between two functions. e.g. given two functions f and g, the convolution integal expresses how the shape of one function is modified by the other. Such networks are traditionally used for image classification, and do not account for sequential dependencies in the way that a recurrent neural network is able to do.

卷积神经网络是在确定两个函数之间的关系时应用称为卷积的过程的网络。 例如给定的两种功能FA ND g,则卷积integal表示如何一个函数的形状是由其他改性。 传统上,此类网络用于图像分类,并且不像递归神经网络能够做到的那样考虑顺序依赖性。

However, the main advantage of CNNs that make them suited to forecasting time series is that of dilated convolutions - or the ability to use filters to compute dilations between each cell. That is to say, the size of the space between each cell, which in turn allows the neural network to better understand the relationships between the different observations in the time series.

但是,使CNN适于预测时间序列的主要优点是膨胀卷积的优点 -或使用过滤器计算每个像元之间的膨胀的能力。 也就是说,每个单元格之间的空间大小可以使神经网络更好地理解时间序列中不同观测值之间的关系。

For this reason, LSTM and CNN layers are often combined when forecasting a time series. This allows for the LSTM layer to account for sequential dependencies in the time series, while the CNN layer further informs this process through the use of dilated convolutions.

因此,在预测时间序列时,通常会合并LSTM和CNN层。 这允许LSTM层考虑时间序列中的顺序依赖性,而CNN层则通过使用膨胀卷积进一步通知此过程。

With that being said, standalone CNNs are increasingly being used for time series forecasting, and the combination of several Conv1D layers can actually produce quite impressive results — rivalling that of a model which uses both CNN and LSTM layers.

话虽这么说,独立的CNN越来越多地用于时间序列预测,并且多个Conv1D层的组合实际上可以产生令人印象深刻的结果-与使用CNN和LSTM层的模型相媲美。

How is this possible? Let’s find out!

这怎么可能? 让我们找出答案!

The below example was designed using a CNN template from the Intro to TensorFlow for Deep Learning course from Udacity — this particular topic is found in Lesson 8: Time Series Forecasting by Aurélien Géron.

下面的示例是使用UdacityIntro to TensorFlow深度学习课程中的CNN模板设计的—该特殊主题可以在AurélienGéron的第8课:时间序列预测中找到。

我们的时间序列问题 (Our Time Series Problem)

The below analysis is based on data from Antonio, Almeida and Nunes (2019): Hotel booking demand datasets.

以下分析基于Antonio,Almeida和Nunes(2019)的数据:酒店预订需求数据集

Imagine this scenario. A hotel is having difficulty in forecasting hotel booking cancellations on a day-to-day basis. This is leading to difficulty in foreca

  • 1
    点赞
  • 23
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值