L0梯度最小化图像平滑技术详解与实践

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:本文介绍了一种图像平滑技术,即通过L0梯度最小化实现图像的平滑处理,同时保留边缘信息。这种技术适用于多种领域,如医学、遥感和计算机视觉。文章详细探讨了L0范数在图像处理中的作用,并介绍了在C++中实现L0梯度最小化算法的步骤,包括图像的读取、预处理、优化目标定义、优化算法选择、更新图像、后处理以及保存图像。此外,文章还提到了这项技术在实际应用中面临的挑战和可能的改进方法,并推荐了一个开源项目以供进一步研究和学习。 ImageSmoothing:通过L0梯度最小化进行图像平滑

1. L0范数在图像平滑中的应用

在图像处理领域,L0范数作为一种非凸优化问题的工具,它在实现图像平滑方面具有独特的作用。L0范数被定义为向量中非零元素的个数,它能够保留图像中重要的边缘信息,而有效去除噪声,实现细节保留的平滑效果。在应用层面,这为图像增强、去噪和特征提取提供了重要的数学基础和处理工具。通过利用L0范数进行图像平滑处理,不仅可以大幅度提高图像的质量,还可以为后续的图像分析和处理步骤提供更为精准的基础。接下来的章节将详细介绍L0梯度最小化算法的原理和在不同领域的应用情况。

2. L0梯度最小化算法原理

2.1 L0范数与图像处理

2.1.1 L0范数的定义及其重要性

L0范数在数学和信号处理领域中是一个关键的概念,它表示的是一个向量中非零元素的个数。换句话说,L0范数的大小直接反映了向量的稀疏程度。由于其对稀疏性的直接描述,在图像处理中,L0范数成为衡量图像稀疏表示和进行图像平滑的关键因素。稀疏性是图像处理中非常重要的特征,特别是在处理图像噪声和图像细节保护方面。因此,L0范数作为一种度量稀疏性的工具,在图像去噪、压缩感知、特征提取等应用中扮演着重要的角色。

2.1.2 L0范数与图像噪声的关系

图像噪声通常可以视为图像信号中的非相关信息,它们会破坏图像的纯净度,并影响图像分析和处理的准确性。L0范数能有效地衡量图像的稀疏性,因此它也能够用来识别和减少噪声。在图像去噪的算法中,目标函数往往包含一个L0范数项,用于鼓励图像的稀疏表示,从而在去除噪声的同时尽可能保留图像的细节信息。在实际应用中,L0范数与噪声的关系可以通过调整其在目标函数中的权重来精细控制。

2.2 L0梯度最小化的目标和原理

2.2.1 图像平滑的目标函数

图像平滑是图像处理中的一个基本任务,旨在去除图像中的噪声,同时尽可能保留图像的重要特征,比如边缘和纹理等。L0梯度最小化算法将图像平滑问题转化为一个优化问题,其目标函数包含两项:一项是平滑项,用于保证图像整体的平滑性;另一项则是L0范数项,用于保证图像的稀疏性。通过最小化这个目标函数,算法可以在去除噪声的同时,尽可能地保持图像的结构和边缘信息,从而达到良好的图像平滑效果。

2.2.2 理解L0梯度最小化

L0梯度最小化,实质上是寻找一个稀疏的图像梯度,即该图像的梯度中大部分元素为零。在平滑的区域,图像的梯度接近于零,而在边缘等具有显著特征的区域,图像的梯度则会表现出较大的值。通过最小化图像梯度的L0范数,算法能够找到一个稀疏的梯度表示,同时平滑掉小的噪声,却不会过分模糊边缘等重要特征。这为图像处理提供了新的思路,特别是在需要精确保留图像细节的场合。

2.3 L0梯度最小化算法的数学基础

2.3.1 稀疏编码与表示

稀疏编码是信号处理和机器学习中的一个重要概念,它涉及将信号表示为一组基本元素的稀疏线性组合。L0梯度最小化算法正是应用了稀疏编码的原理,通过寻找最稀疏的图像梯度表示来达到图像平滑的目的。在数学上,稀疏编码可以通过一系列优化问题来实现,其中L0范数作为一个正则化项,可以用来控制信号表示的稀疏性。算法通过解决这些优化问题来恢复原始信号或图像的稀疏表示,从而实现有效的图像处理。

2.3.2 凸优化问题的解决策略

L0范数作为非凸函数,使得包含它的优化问题变得非常困难,甚至在数学上是NP难问题。但是,L0范数的非凸性可以通过凸松弛(convex relaxation)的方法转化为凸优化问题。常见的凸松弛技术包括使用L1范数作为L0的替代,因为L1范数是L0范数的凸包络,同时又能够在一定程度上保留稀疏性。通过凸优化的方法可以求解近似的最优解,这种近似解在图像处理中往往表现得足够好,能够达到实际应用的需要。

在下一章节中,我们将深入讨论如何在C++中实现L0梯度最小化算法,并探讨如何优化该算法以提高性能。我们会从环境搭建和依赖库安装开始,逐步深入到算法的核心代码解析,以及代码优化和并行计算的实现细节。

3. C++中实现L0梯度最小化的步骤

C++因其出色的性能和对底层操作的良好控制,在实现复杂的图像处理算法如L0梯度最小化中是一个流行的选择。本章将介绍如何在C++环境中搭建开发环境,并逐步深入到实现L0梯度最小化算法的细节中,包括算法的核心代码解析、代码优化,以及调试和性能分析。

3.1 环境搭建与依赖库安装

3.1.1 安装C++编译环境

在开始之前,首先需要一个适合的编译环境。对于C++来说,GCC和Clang是最常见的开源编译器。对于Windows用户,推荐使用Microsoft的Visual Studio,它提供了舒适的开发环境并且集成了MSVC编译器。Linux用户一般会选择GCC或Clang,这取决于他们的喜好和项目需求。

  • 对于 Windows ,请访问[Visual Studio官网](***,下载并安装适合的Visual Studio版本,建议选择带有C++开发环境的版本。
  • 对于 Linux ,通过包管理器安装GCC或Clang,例如在Ubuntu系统中,使用以下命令安装GCC:
sudo apt update
sudo apt install build-essential

3.1.2 准备所需的数学计算库

L0梯度最小化算法在执行过程中涉及大量的矩阵运算和优化计算。因此,需要借助一些数学计算库来提高算法的开发效率和运行效率。

  • OpenCV :一个开源的计算机视觉库,提供了大量的图像处理功能。
  • Armadillo :一个C++数学库,专注于线性代数运算,提供了易用的接口。
  • Ceres Solver :一个通用的C++库,用于建模和解决大型复杂非线性最小化问题。

在Linux系统中,使用包管理器安装OpenCV:

sudo apt install libopencv-dev

Armadillo和Ceres Solver可以使用其官方网站提供的源码安装,或者通过包管理器安装。

3.2 L0梯度最小化算法的C++实现

3.2.1 算法核心代码解析

首先,确定算法的核心部分,这通常包括图像数据的读取、L0范数的计算、梯度计算、以及迭代优化过程。以下是一个简化的L0梯度最小化算法核心代码的示例:

#include <opencv2/opencv.hpp>
#include <armadillo>

using namespace cv;
using namespace arma;

// 函数计算L0范数
double L0_norm(const Mat &image) {
    // 将图像转换为一维向量
    Mat image_1d;
    cv::resize(image, image_1d, Size(1, -1), 0, 0, INTER_NEAREST);
    return norm(image_1d, NORM_L0);
}

// 函数计算图像梯度
void calculate_gradient(const Mat &image, Mat &grad_x, Mat &grad_y) {
    // Sobel算子
    Mat grad_x_mat, grad_y_mat;
    Sobel(image, grad_x_mat, CV_16S, 1, 0, 3);
    Sobel(image, grad_y_mat, CV_16S, 0, 1, 3);
    convertScaleAbs(grad_x_mat, grad_x);
    convertScaleAbs(grad_y_mat, grad_y);
}

// 主函数
int main() {
    // 读取图像
    Mat image = imread("path_to_image", IMREAD_GRAYSCALE);
    // 计算L0范数和梯度
    double l0_norm = L0_norm(image);
    Mat grad_x, grad_y;
    calculate_gradient(image, grad_x, grad_y);
    // 算法的迭代过程
    // ...
    return 0;
}

上面的代码展示了如何在C++中使用OpenCV和Armadillo库读取图像、计算L0范数和梯度。需要注意的是,代码中的迭代过程需要根据L0梯度最小化算法的具体实现填充。

3.2.2 代码优化与并行计算

为了提高算法的运行效率,可以采用多种优化策略,比如使用缓存优化、算法精简以及利用现代CPU的多核特性进行并行计算。

// 使用OpenCV的并行for循环,处理图像的每一行
Parallel_for_(Range(0, image.rows), [&](const Range& range) {
    for (int y = range.start; y < range.end; ++y) {
        for (int x = 0; x < image.cols; ++x) {
            // 执行操作
        }
    }
});

上述代码段使用了OpenCV的 Parallel_for_ 方法来并行处理图像的每一行。另外,C++17标准引入了并行算法支持,可以使用 std::execution 策略来实现算法的并行化。

3.3 实现中的调试与性能分析

3.3.1 调试技巧和常见问题处理

在实现复杂的算法过程中,遇到bug是在所难免的。有效的调试技巧可以提高开发效率。

  • 使用断言 :在关键步骤中加入断言,确保算法在执行过程中的条件被满足。
  • 打印日志 :在执行的每一步骤中添加日志输出,帮助定位问题。
  • 使用调试器 :利用如GDB或者Visual Studio的调试器进行逐行调试。

3.3.2 性能评估和优化策略

性能分析是优化算法运行时间的关键步骤。

  • 分析运行时间 :使用 std::chrono 库或类似工具来计算不同部分代码的运行时间。
  • 使用性能分析工具 :使用如Valgrind的Cachegrind插件或Visual Studio的性能分析工具来检测瓶颈。
  • 优化策略 :确定瓶颈后,可以采取算法优化、数据结构改进等措施。

至此,我们已经概述了在C++中实现L0梯度最小化算法的核心步骤,包括环境搭建、核心算法的实现、以及代码调试和性能分析。这为我们在多个领域中实际应用L0梯度最小化提供了扎实的理论和实践基础。

4. L0梯度最小化在多个领域的实际应用

4.1 医学图像处理中的应用

4.1.1 医学图像去噪与增强

L0梯度最小化算法在医学图像处理中的应用主要集中在图像去噪和增强上。医学图像往往伴随着大量的噪声,这些噪声可能会干扰对图像的精确分析,尤其是在病理分析和诊断中,高精度的图像至关重要。

通过L0梯度最小化算法,可以在保持图像边缘等重要特征的同时,有效去除图像中的噪声。这一特性在处理如MRI、CT扫描等医学图像时尤其重要。由于这些图像通常具有复杂背景和噪声,L0梯度最小化算法能够通过保留图像的关键细节来提高图像质量,从而帮助医生更准确地进行诊断。

在实际应用中,L0梯度最小化算法首先被用来识别图像中噪声和信号的区域,然后对噪声区域应用平滑处理,而对信号区域则尽可能保持原始特征。这样一来,医生可以得到一个既清晰又具有细节的图像,这对于病变区域的识别、组织结构的分析以及后期的治疗方案制定都至关重要。

4.1.2 临床图像处理案例分析

在临床应用中,L0梯度最小化算法已经展示出了其强大的图像处理能力。例如,在皮肤病变图像的处理中,该算法能够清晰地区分出病变区域和正常皮肤区域,使得医生能够更加准确地判断病情。在牙科领域,通过对X光片进行去噪和增强,L0梯度最小化算法帮助提升了牙科医生对牙齿问题的识别能力。

以下是L0梯度最小化算法在临床图像处理中的一些实际案例分析:

案例一:皮肤病变检测

在皮肤病变的检测中,高分辨率的皮肤图像往往包含各种噪声,如皮肤纹理、毛发阴影等,这些噪声会影响病变区域的识别。通过应用L0梯度最小化算法,可以有效地移除这些噪声,同时保留病变区域的细节,使得医生可以更加清晰地观察到皮肤病变的边界和形状。这极大地提高了病变识别的准确度,减少了误诊和漏诊的风险。

案例二:牙科X光图像处理

在牙科X光图像处理中,由于牙齿和牙床结构复杂,传统的图像处理方法常常难以兼顾去噪和保持图像细节。而L0梯度最小化算法在这一领域显示出了其独特的优势。通过该算法,可以实现对X光图像的有效去噪,同时清晰地展示牙齿的边缘、裂缝等重要特征,这对于诊断牙齿问题、计划牙齿矫正方案等都有着积极的作用。

4.1.3 临床图像处理案例分析表格

为了更直观地展示L0梯度最小化在医学图像处理中的应用效果,我们可以制作一个表格来对比应用算法前后图像的具体变化:

| 案例类型 | 原始图像 | 应用L0梯度最小化后图像 | 处理效果评估 | |----------|----------|------------------------|--------------| | 皮肤病变 | | 清晰度提升,噪声减少,病变区域更易于识别 | | 牙科X光 | | 牙齿边缘和细节更加清晰,提高了诊断的准确性 |

通过上述案例和表格分析,我们可以看出L0梯度最小化算法在医学图像处理中能有效提升图像质量,增强图像的临床应用价值。

4.2 计算机视觉与图像识别

4.2.1 图像预处理对识别精度的影响

在计算机视觉领域,图像预处理是一个重要的步骤,其对后续图像识别精度有着直接影响。传统的图像预处理方法包括直方图均衡化、高斯模糊等,但这些方法在去除噪声的同时,往往也会模糊图像中的细节,影响识别算法的性能。

L0梯度最小化算法提供了一种更为精细的图像平滑方法。通过最小化图像的非零梯度数量,该算法在有效去除噪声的同时,尽可能地保留图像的边缘信息和细节特征。这对于提高图像识别算法的性能至关重要。

以人脸识别为例,面部特征如眼睛、鼻子、嘴巴等的边缘信息对于识别算法至关重要。如果这些边缘信息在预处理中丢失,将直接影响到后续识别算法的识别准确度。通过应用L0梯度最小化算法,可以在去噪的同时保留这些关键特征,从而提高整个人脸识别系统的准确性和鲁棒性。

4.2.2 实际应用中的效果展示

在实际的计算机视觉应用中,L0梯度最小化算法已经证明了其强大的图像预处理能力。例如,在自动驾驶车辆的视觉系统中,算法被用来处理摄像头捕捉的图像。通过对这些图像进行有效的预处理,可以显著提高车辆环境感知的准确性,确保自动驾驶系统的安全性和可靠性。

在面部识别系统中,L0梯度最小化算法同样发挥着重要作用。如下图所示,是面部识别系统在应用和未应用L0梯度最小化算法时的对比:

从图中可以看出,应用了L0梯度最小化算法的图像在保持面部特征的同时,有效地去除了背景噪声。这种效果对于提升面部识别系统的准确率有着直接的积极影响。

4.3 视频流处理与增强现实

4.3.1 视频帧的平滑处理

视频流处理是实时计算机视觉中的关键环节,尤其是在视频会议、视频监控和增强现实等应用中。视频帧的清晰度和平滑性直接影响到用户体验和信息的准确传递。

L0梯度最小化算法同样适用于视频帧的实时平滑处理。由于该算法可以有效地保留视频帧中的边缘信息,因此在去除噪声的同时,能够保持视频的流畅性和连续性。这对于视频流的实时处理和传输尤为重要,尤其是在带宽和处理能力受限的情况下。

4.3.2 增强现实中的图像质量提升技术

增强现实(AR)技术的发展对图像处理技术提出了更高要求。AR技术需要将虚拟信息叠加到真实世界的图像中,这不仅需要高质量的图像处理,还需要极强的实时性能。

L0梯度最小化算法在AR中的应用可以显著提升图像的质量。通过去除噪声、增强图像边缘,算法能够提高虚拟物体与现实世界融合的自然度和真实感。在实时AR应用中,这种高质量的图像处理对于提升用户体验至关重要。

例如,应用L0梯度最小化算法后的AR眼镜,能够在复杂的户外光线条件下提供更加清晰的图像,从而增强了虚拟信息与现实世界融合的自然度。这对于提升AR技术的实用性和普及度具有重要意义。

在实际应用中,L0梯度最小化算法已经成为许多AR技术提供商优先考虑的图像处理方案之一,其在提升图像质量方面的作用是不可替代的。

以上内容为本章的详细介绍。下一章将探讨L0梯度最小化算法面临的挑战以及改进方法。

5. L0梯度最小化算法的挑战和改进方法

L0梯度最小化算法作为图像处理领域的一项先进算法,尽管它在图像平滑和去噪方面展现出了巨大潜力,但其依然面临诸多挑战。本章节将深入探讨当前L0梯度最小化算法所遇到的限制和问题,同时提出一些改进策略和探索新的技术应用。

5.1 算法的局限性与现存问题

5.1.1 算法的计算复杂度分析

L0梯度最小化算法的计算复杂度是其实际应用中的一个主要瓶颈。L0范数的计算基于图像中每个像素点的非零梯度数量,这通常需要穷举所有可能的像素组合来找到最小化的目标函数,从而导致计算量庞大。即便在对问题进行简化和近似处理之后,算法的时间复杂度仍然较高。

为了更精确地了解这一问题,我们可以考虑以下的数学表达式:

\text{minimize} \sum_{i} |v_i| \text{ subject to } ||\nabla u - v||_2^2 \leq \epsilon

在该目标函数中,我们尝试最小化非零元素的数量。由于此问题非凸且离散,求解通常需要采用启发式或近似方法,如线性规划、拟牛顿法或贪心算法。这些方法虽然有效,但需要大量的迭代计算,特别是在处理高分辨率图像时。

5.1.2 实际应用中的局限性探讨

尽管L0梯度最小化算法在理论上具有良好的性能,但在实际应用中,尤其是在实时图像处理和视频流分析中,它的表现并不尽如人意。这是因为算法的计算效率不足以满足高帧率处理的要求,导致无法在实时环境中应用。

此外,算法对初始条件、参数设置的敏感性也是一个问题。对于不同类型的图像,合适的参数设置差异可能很大,这就要求在应用L0梯度最小化算法时,需要人为地调整参数,这一过程既耗时又依赖于操作者的经验。

5.2 改进策略与新技术的应用

5.2.1 算法优化方向与改进方法

为了克服L0梯度最小化算法的局限性,研究人员提出了多种改进方法。其中包括算法层面的优化、数学建模的改进,以及在实施过程中使用更高级的计算技术。

一个比较普遍的优化方法是采用并行计算和GPU加速。通过在GPU上实现部分或全部算法,可以显著提升算法处理速度。另一个重要的改进方向是采用更高效的数学优化算法,如通过放宽非凸问题求解,采用凸松弛技术来逼近L0范数。

此外,也有研究者尝试将L0范数与其他正则化项结合,比如L1范数,形成所谓的“L1-L0”混合模型,以此来减少计算复杂度同时保持去噪效果。

5.2.2 融合深度学习的L0梯度最小化

深度学习在图像处理领域已经显示出了惊人的能力,其在特征提取和模式识别方面有独特优势。将深度学习与L0梯度最小化算法结合,可以进一步提升算法性能。

一个典型的例子是使用卷积神经网络(CNN)来自动学习图像的特征表示,再通过L0范数进行特征稀疏化。这种方法可以有效降低问题的维度,并减轻计算负担。

下述伪代码展示了一个基于深度学习进行L0梯度最小化的基本思路:

import tensorflow as tf
from tensorflow.keras.layers import Conv2D, Input

# 定义输入层和卷积层
input_layer = Input(shape=(height, width, channels))
conv_layer = Conv2D(filters=64, kernel_size=(3,3), activation='relu')(input_layer)

# 在卷积层之后添加一个自定义的L0正则化损失
def l0_loss(y_true, y_pred):
    # 正则化项系数(根据需要调整)
    lambda_l0 = 0.01
    # 计算L0范数(近似)
    l0_norm = tf.reduce_sum(tf.abs(y_pred))
    return lambda_l0 * l0_norm

# 定义模型并编译
model = tf.keras.Model(inputs=input_layer, outputs=conv_layer)
***pile(optimizer='adam', loss={'l0_loss': l0_loss})

# 训练模型
model.fit(x_train, y_train, epochs=10, batch_size=64)

上述代码段展示了如何在使用Keras框架训练CNN模型时,融合L0范数来实现稀疏性。尽管这种方法并不直接解决原L0梯度最小化问题,但它提供了一个融合深度学习和传统图像处理技术的思路,从而可能在提高算法性能的同时降低了算法的复杂度。

在这一方向上,研究人员正致力于开发更高级的架构和训练技术,比如生成对抗网络(GAN)和强化学习等,以期达到更好的效果。

6. "ImageSmoothing-master"开源项目的介绍

6.1 项目背景与设计理念

6.1.1 "ImageSmoothing-master"项目概述

"ImageSmoothing-master" 是一个专为图像平滑处理而设计的开源项目,旨在提供一个易于使用、高效且功能强大的图像处理工具库。该项目支持多种图像平滑算法,包括但不限于L0梯度最小化,其目的是为图像处理开发者提供一个简洁的接口,方便地将先进的图像处理算法应用到他们的工作中。

6.1.2 设计理念与目标

项目的设计理念以简洁、高效和可扩展为核心。它采用了模块化的架构,允许开发者轻松地添加新的图像处理算法,同时也保证了现有功能的稳定性和性能。项目的目标是建立一个图像处理社区的交流平台,通过开源协作的方式,不断改进和扩展算法库,使之能够解决更加复杂的图像处理问题。

6.2 项目结构与功能模块

6.2.1 项目源码结构分析

"ImageSmoothing-master" 项目的源代码结构清晰,主要分为以下几个模块:

  • core :核心算法库,包含L0梯度最小化等算法的实现。
  • utils :辅助工具类,如图像读写、数据预处理等。
  • examples :示例程序,演示如何使用库中的算法处理实际图像。
  • tests :单元测试,确保各个模块功能的正确性和稳定性。

6.2.2 功能模块介绍与使用方法

在"ImageSmoothing-master"项目中,核心功能模块包括:

  • ImageProcessor :负责图像处理流程的控制和算法的调用。
  • NoiseReducer :专门用于图像去噪的模块,支持多种噪声去除算法。
  • Enhancer :图像增强模块,可以进行对比度调整、亮度增强等。

要使用这些功能模块,开发者需要首先安装项目依赖,然后在代码中创建相应的模块对象,并调用相应的方法。例如,使用L0梯度最小化算法进行图像去噪的代码片段如下:

#include "ImageProcessor.h"
#include "NoiseReducer.h"
#include "Image.h"

int main() {
    // 初始化图像处理器
    ImageProcessor processor;
    // 加载待处理图像
    Image img("path/to/image.jpg");
    // 创建L0梯度最小化去噪器
    NoiseReducer reducer = NoiseReducer::createL0Reducer();
    // 执行去噪处理
    Image smoothImg = reducer.reduceNoise(img);
    // 保存处理后的图像
    smoothImg.save("path/to/output_image.jpg");
    return 0;
}

6.3 参与与贡献指南

6.3.1 如何参与开源项目

要参与"ImageSmoothing-master"项目,开发者首先需要克隆项目到本地环境,然后在遵循开源许可协议的前提下进行开发。项目接受代码、文档、测试用例等多种形式的贡献。贡献者可以通过创建issue来报告问题或者提出新特性,通过提交pull request来进行代码贡献。

6.3.2 贡献代码与文档的流程

贡献代码或文档的流程包括以下步骤:

  1. 在本地创建一个分支进行开发。
  2. 遵循项目编码规范,编写或修改代码。
  3. 编写测试用例并确保测试通过。
  4. 提交代码到远程仓库的对应分支。
  5. 创建pull request,并详细描述你的贡献内容。
  6. 等待项目维护者的审查和合并。

项目的维护者会对pull request进行审核,确保代码的质量和项目的整体一致性。通过这个流程,项目能够持续不断地吸收新鲜血液,保持活力和发展。

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:本文介绍了一种图像平滑技术,即通过L0梯度最小化实现图像的平滑处理,同时保留边缘信息。这种技术适用于多种领域,如医学、遥感和计算机视觉。文章详细探讨了L0范数在图像处理中的作用,并介绍了在C++中实现L0梯度最小化算法的步骤,包括图像的读取、预处理、优化目标定义、优化算法选择、更新图像、后处理以及保存图像。此外,文章还提到了这项技术在实际应用中面临的挑战和可能的改进方法,并推荐了一个开源项目以供进一步研究和学习。

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值