class ts 扩展方法_N-BEATS:神经网络底层扩展分析,用于可解释的时间序列预测...

N-BEATS是一种基于神经网络的深层结构,用于时间序列预测,具有可解释性、普适性和快速训练的特点。在多个数据集上展示出优于传统统计模型和竞争对手的性能,且证明深度学习原语如残差块足以解决多种预测问题。此外,N-BEATS可通过扩展提供可解释的输出,而不牺牲准确性。
摘要由CSDN通过智能技术生成

4ee18dff3c9bca3245c551e7d8021086.png

N-BEATS:神经网络底层扩展分析,用于可解释的时间序列预测

题目:

N-BEATS: Neural basis expansion analysis for interpretable time series forecasting

作者:

Boris N. Oreshkin, Dmitri Carpov, Nicolas Chapados, Yoshua Bengio

来源:

Computer Vision and Pattern Recognition (cs.CV)

ICLR 2020

Submitted on 25 Jul 2019 (v1), last revised 8 Apr 2020 (this version, v4)

文档链接:

https://openreview.net/pdf?id=r1ecqn4YwB

代码链接:

https://github.com/amitesh863/nbeats_forecast

摘要

我们专注于使用深度学习来解决单变量时间序列点预测问题。我们提出了一种基于神经网络的深层神经结构,该结构基于向前和向后的残差链接以及非常深的全连接层堆栈。该体系结构具有许多理想的属性,这些属性可以解释,可以在不修改大量目标域的情况下适用,并且训练迅速。我们在几个著名的数据集上测试了提议的体系结构,包括M3,M4和TOURISM竞赛数据集,其中包含来自不同领域的时间序列。我们展示了针对所有数据集的两种N-BEATS配置的最新性能,与统计基准相比,预测准确性提高了11%,与去年M4竞赛的获胜者相比,提高了3%,在神经网络和统计时间序列模型之间进行领域调整的手工混合。我们模型的第一个配置未使用任何特定于时间序列的组件,并且其在异构数据集上的性能强烈表明,与公认的知识相反,深度学习原语(例如残差块)本身足以解决各种预测问题。最后,我们演示了如何扩展所建议的体系结构以提供可解释的输出,而不会造成准确性的重大损失。诸如残差块之类的深度学习原语本身就足以解决各种预测问题。最后,我们演示了如何扩展所建议的体系结构以提供可解释的输出,而不会造成准确性的重大损失。诸如残差块之类的深度学习原语本身就足以解决各种预测问题。最后,我们演示了如何扩展所建议的体系结构以提供可解释的输出,而不会造成准确性的重大损失。

英文原文

We focus on solving the univariate times series point forecasting problem using deep learning. We propose a deep neural architecture based on backward and forward residual links and a very deep stack of fully-connected layers. The architecture has a number of desirable properties, being interpretable, applicable without modification to a wide array of target domains, and fast to train. We test the proposed architecture on several well-known datasets, including M3, M4 and TOURISM competition datasets containing time series from diverse domains. We demonstrate state-of-the-art performance for two configurations of N-BEATS for all the datasets, improving forecast accuracy by 11% over a statistical benchmark and by 3% over last year's winner of the M4 competition, a domain-adjusted hand-crafted hybrid between neural network and statistical time series models. The first configuration of our model does not employ any time-series-specific components and its performance on heterogeneous datasets strongly suggests that, contrarily to received wisdom, deep learning primitives such as residual blocks are by themselves sufficient to solve a wide range of forecasting problems. Finally, we demonstrate how the proposed architecture can be augmented to provide outputs that are interpretable without considerable loss in accuracy.

N-BEATS结构

所提议的基本构建块具有一个分支架构,如图1(左)所示。在本节中,我们着重详细描述第t个块的操作(为简便起见,在图1中删除了块索引`)。第t个块接受其各自的输入x,并输出两个向量bx和by。对于模型中的第一个块,其相应的x`是整体模型输入的一定长度的历史回溯窗口,以最后一次测量的观测值结束

dd747965098efa8704a38b58b485a763.png

图1:提议的架构。其基本构件是具有相关非线性的多层FC网络。它预测基础上扩张系数都向前,θ^f(预测)和落后,θ^b(展望)。块被组织成堆叠使用双重剩余堆积原则。堆栈可以有共享的g^b和g^f层。预测以分级方式汇总。这使得构建一个具有可解释输出的深度神经网络成为可能。

实验结果

表1:在M4、M3、旅游测试集上的性能,聚合在每个数据集上。为每个数据集指定评估指标;数值越低越好。括号中提供了每个数据集中的时间序列数量。

1a3d78092dbadb6baf31074c0893f564.png

根据表1,N-BEATS在三个具有挑战性的非重叠数据集上展示了最先进的性能,这些数据集包含来自非常不同领域的时间序列、采样频率和季节性。通用的N-BEATS模型使用尽可能少的先验知识,没有特征工程,没有缩放,也没有内部的体系结构组件,这些组件可能被认为是特定于时间序列的。

因此,表1中的结果使我们得出这样的结论:DL不需要统计方法或手工特征工程和领域知识的支持,就可以在大量的TS预测任务中表现得非常好

讨论:N-BEATS与元学习的联系

元学习Meta-learning

元学习定义了一个内在的学习过程和一个外在的学习过程。内部学习过程是参数化、条件化或受外部学习过程影响的(Bengio et al., 1991)。

典型的内学习和外学习是个体在动物的一生中学习,而内学习过程则是个体在几代人的时间里不断进化。要了解这两个层次,通常需要参考两组参数,即在内部学习过程中修改的内部参数(如突触权重),及外部参数或元参数(如基因)只在外部学习过程中被修改。

N-BEATS可以通过以下类比作为元学习的一个实例。外部学习过程被封装在整个网络的参数中,通过梯度下降学习内部学习过程封装在一组基本构建模块中,并进行修改底层 g f作为输入的扩张系数θ f

f55a7c4956c3f5ea0193e42ea9acdab3.png

图2:通用配置和可解释配置的输出,M4数据集。每行是每个数据频率的一个时间序列例子,从上到下(:id Y3974,季度:id Q11588,:id M19006,:id W246,:id D404,小时:id H344)。

为了方便起见,将行中的大小按实际时间序列的最大值进行标准化。(a)列显示实际值(ACTUAL)、一般模型预测(FORECAST-G)和解释模型预测(FORECAST-I)。列(b)和(c)分别显示了通用模型的栈1和栈2的输出;FORECAST-G是它们的总和。列(d)和(e)分别显示可解释模型的趋势和季节性堆栈的输出;FORECAST-I是它们的总和。

结论

我们提出并实证验证了一种新的单变量TS预测体系结构。结果表明,该体系结构具有通用性、灵活性和良好的预测性能。我们将其应用于三个不重叠的挑战性竞争数据集:M4、M3和旅游业,并在两种配置下展示了最先进的性能:通用和可解释。这使我们能够验证两个重要的假设:(i)一般的DL方法在不使用TS领域知识的异构单变量TS预测问题上表现得非常好,(ii)另外约束DL模型迫使其将预测分解为不同的人类可解释输出是可行的。我们还证明了DL模型可以以多任务的方式在多个时间序列上进行训练,成功地传递和共享个体的学习。我们推测,N-BEATS的表现在一定程度上可以归因于它进行了一种元学习的形式,对它进行更深入的研究应该是未来工作的主题。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值