如何将矩阵化为约旦标准型_Hamilton-Carley定理:方阵的特征多项式为何总能将该方阵零化...

add7bd3ee963d89ad7ec22baf04ef9d7.png

线性代数学到矩阵的相似标准型时,一般会遇到重要的Hamilton-Carley定理,它说方阵的特征多项式也必然是其零化多项式。

Hamilton-Carley定理:设域F上方阵A的特征多项式为
,则将矩阵A带入
必为零矩阵,即

第一次遇到这个结论时,我深感惊奇,惊奇的原因有以下两个:

第一,这个结论并不是很显然,从任意一个方阵到其特征多项式是一个复杂不易理解的映射,如果你计算过普通的3维矩阵的特征多项式,就会知道计算有多繁复(计算4维矩阵特征多项式感觉是人类的极限),而把矩阵再带入这个特征多项式,又是巨大的计算量,结果却恰好为零矩阵!!!

第二,这个结论出现得非常雪中送炭。因为计算矩阵的相似标准型,急需找到矩阵的一个零化多项式(根据另一个定理,只要对零化多项式进行因式分解,就可以把矩阵相似变换为分块对角矩阵,复杂度一下子降低很多)。

因为读大学的时候贪多,同时修了太多课程,结果导致当时没有精力深入浅出地思考这个定理(强烈建议学数分和高代时要给自己预留充足的做题和回味时间,不要同时修太多其它课程,学深入浅出了才好,大神除外),直到15年后的最近,重新回味,才找到一个比较直观的理解方法,记录如下。

为简单起见,我们假设是在复数域上的方阵,那么特征多项式必可分解为一次多项式的乘积;为了更简单起见,我们假设矩阵的n个特征根互不相同,于是

把矩阵A带入,得到

由于有n 不同的特征根,因此n维空间可以分解为n个特征子空间的直和,换言之,空间中任意向量x都可以唯一表示为

其中右端每个分量都属于对应特征根的特征子空间。下面我们来看f(A)作用在x上的效果,由上面f(A)的分解式知,这相当于

依次作用在x上(作用顺序不影响结果)。由于
的特征向量,那么显然
会把
打成零,而由于x的其他分量都位于相应的特征子空间(注意特征子空间也是A的不变子空间),所以
作用在其它分量上,不会把各分量打出其原来所在的特征子空间。因此
作用过之后,相应分量打成零,而其它分量虽然变化,但仍落在原来所在的特征子空间里。因此所有
作用过之后,所有分量依次打成零,因此必有f(A)x = 0。由于x是任意的,所以必有f(A)是零矩阵。简单总结就是:f(A)分解出的n个因子,把空间任一向量x的各个分量依次打为零,所以f(A)必为零矩阵。

对于更一般的情形,例如

有重根的情形,或许可以对特征根做微扰法,化为上述n个特征根互不相同的情形,再取扰动趋于零的极限(这这一段还没完全想清楚,不过上述最简单情形基本已经达到直观理解HC定理的目的了)

对于一般域的情况,可以将F扩域到n次多项式方程必有n个根的情形(有专门的定理保证),所以也是可以顺畅推广的

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值