psm倾向得分匹配法举例_倾向得分匹配法(PSM)举例及stata实现

这篇博客探讨了使用倾向得分匹配法(PSM)来分析新南威尔士州政策背景下,接受培训对工资影响的研究。PSM旨在解决处理组和对照组之间的不可观测差异,通过匹配处理组和对照组的倾向得分,以评估培训对薪酬的因果效应。内容涉及变量定义,如处理指标、年龄、教育年限、种族等,并提供了Stata实现PSM的示例。
摘要由CSDN通过智能技术生成

倾向得分匹配法

(PSM)

举例及

stata

实现

偏好分数匹配法

(PSM)

stata

实施

-

阅读注释

[

示例

]

政策背景

:

国家支持的工作,新南威尔士州

)

研究目标

:

测试接受

或不接受计划

(

培训

)

对工资的影响基本思想是分析培训组和非培训

组之间的薪酬绩效差异。然而,在现实中可以观察到的事实是,治疗

组接受了训练,

没有治疗组的训练是不可能观察到的,

这也变成了一

个相反的事实。

匹配法就是为了解决这个不可观察的事实在倾向分数

匹配方法中,根据处理指标变量将样本分为两组。一个是处理组,在

这种情况下是在新南威尔士州实施后训练的组。第二个是比较小组,

在这种情况下,在新南威尔士州实施后,该小组不接受培训。趋势得

分匹配法的基本思想是在治疗组和对照组的样本以一定方式匹配后,

在其他条件完全相同的情况下,

通过训练组

(

治疗组

)

和非训练组

(

对照

)

之间的薪酬绩效差异来判断训练行为与薪酬之间的因果关系。

变量定义

:

变量

定义

加工指标变量,

1

为训练

(

加工组

)

0

为未接受训练

(

对照组

)

年龄

(

)

教育年限

(

)

民族假人变量,

BLACK=1

民族假人变量当

BLACK

。当西班牙人,

HSIP=1

婚姻状况虚拟变量,已婚,

MARR = 1

TREAT *

### 如何在 Stata 中使用 PSM 进行数据分析 #### 安装必要的模块 为了执行倾向得分匹配,在Stata中需要先安装`psmatch2`、`pscore`和`nnmatch`等模块。通过命令行输入如下指令完成安装: ```stata ssc install psmatch2 ssc install pscore ssc install nnmatch ``` #### 数据准备 确保数据集已经加载到工作环境中,并且变量被正确定义为数值型或其他适当类型。 #### 计算倾向得分 计算处理组与对照组成员接受治疗的概率,即倾向得分。假设`treat`表示是否属于处理组(1=是;0=否),而其他协变量分别为`age`, `edu`, 和`income`: ```stata logit treat age edu income predict pscore, xb ``` 这里使用逻辑回归模型估计每个观测值成为处理对象的可能性并保存预测概率作为新的变量`pscore`. #### 执行匹配 接下来利用得到的倾向得分来进行样本间的配对。可以选择多种方式如一对一最近邻匹配(`nearest neighbor matching`)或卡尺内的一对多匹配(`caliper-based k:1 matching`). 下面展示了一种简单形式的一对一无放回匹配的例子: ```stata psmatch2 treat, out(yvar) pscore(pscore) common caliper(0.05) ``` 此命令中的选项解释: - `treat`: 处理指示符; - `out()`: 输出感兴趣的结局变量名; - `pscore()`: 提供先前创建的倾向得分名称; - `common`: 仅保留共同支撑区域内的观察值; - `caliper()`: 设置卡尺宽度以排除距离过远的匹配对[^1]. #### 检查匹配质量 评估匹配前后协变量平衡性非常重要。可以采用标准化均值差异检验或者绘制直方图比较两组之间的分布相似度。例如: ```stata pstest age edu income, both graph ``` 上述代码会生成图表以及报告各特征项的标准平均差变化情况,帮助判断是否存在显著不平衡现象[^3]. #### 结果解读 最后一步是对最终获得的数据子集实施因果效应估算。这通常涉及对比调整后的实验条件下的预期收益差别。具体做取决于所选的研究设计框架,比如可以直接运用OLS回归分析来获取ATE(Average Treatment Effect),也可以考虑结合DID(Double Difference-in-Differences)策略增强结论稳健性[^2].
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值