计算矢量面积_线/面积分在具体计算中的处理(工具向)

efa5936be02ff73b19b545fe8b2251f8.png

这个坑不想填了,稍微做一个笔记备份草草了事。毕竟翻知乎还是很方便的,以后啥方法哪个步骤忘了翻一翻就行…

这篇是纯粹的最基本形式的线/面积分计算的处理的汇总,只体现各种情形下的处理的方式,而非呈现最后的结果。后文不厌其烦的标注出代入的变量就是为了展示:这样代入之后的确得到的是可以计算的东西。

因为是最基本的计算,所以后文不包括各种形式的斯托克斯公式以及全微分这样的方法。当然题目中能用简便方法的的还是应当用简便方法。

注意!本篇中所有的第二类线积分都指的是沿切线方向的积分。在二维中求通量的线积分不适用下述公式。


符号说明:

这篇笔记对符号名称的使用是有点偏向于民科 的,某些符号不要在答题中使用,仅供记忆。

被积曲面:

;被积曲线:
;被积曲线/面的函数描述:

投影范围:

矢量曲线微元:

;矢量曲面微元:

曲线微元:

;曲面微元

(投影)线微元:

;(投影)面微元:

直角坐标系下的坐标:

直角坐标系下的坐标对应的基底:

任意的正交曲线坐标系 下的坐标:

任意的正交曲线坐标系 下的坐标对应的基底:

拉梅系数:

曲线参数:

;曲面参数:

被积函数:

;向量场:

在正交曲线坐标系下的关系式:

以及:


正文

将处理线/面积分的方法分为:直接法参数法

其中直接法意味最后的计算为坐标系的已有变量;参数法意味需要使用参数化曲线/面,最后计算为作为参数的变量。

参数法中只对

参数化,不对任意正交坐标系坐标参数化。因为这样的参数化在具体计算中几乎是没有意义的。笛卡尔坐标系转换成其他正交坐标系或参数化都是简便计算的方法,但是同时使用二者就是毫无意义的增加了麻烦。

除此之外,不讨论任意坐标系下的三维线积分的计算。

线积分中的微元关系࿱

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值