pcl把3dmesh 映射成2维_魔方中的数学1-n维立方体的性质

这篇博客探讨了高维立方体的数学性质,特别是与魔方的关系。主要内容包括立方体的定义、性质,如直角坐标系、高维立方体的边界和中心等。通过定理和推论,解释了如何将3D网格映射到2D,并讨论了高维魔方的结构和颜色分布,强调理解高维魔方不需要直观的视觉化想象。
摘要由CSDN通过智能技术生成

ddcc0d5061db3e3be5655a6a29146d5f.png

此篇的主要内容是定义和研究高维立方体的数学性质。
这是因为立方体是魔方的基础结构,是探索魔方性质的一个开始。
尤其是对于高维魔方,我们缺乏直观理解,取而代之我们需要比较纯粹的数学语言来描述和理解。

第一章 立方体的性质

核心概念:直角坐标系,坐标运算,高维,高维立方体。

定义1.1:在

维直角坐标系写作

任意的点都可以写成带有
位坐标的形式

其中,
是第
条轴的坐标。

如果所有坐标都是
,则称为原点。

评价:
·当

,就是初中数学比较熟悉的平面坐标系;

·当
,则是三维空间坐标系;

·当
,就是真正意义上的“高维空间”。

但是在本文章中, 直观地“看到”或者“视觉化”高维空间并不必要。所以,与其思考“长什么样”,其实读者只需要把这坐标当做“一组数据”即可。

推论1.2
1.

是一个

也就是说,固定某一个坐标不变,其他坐标组成了一个

2.相同地,固定
个坐标不变,其他坐标组成了一个

证明:1.不妨设


创造一个映射关系

此为 线性映射,映射的像拥有
个变量,所以是一个

2.利用数学归纳法可以简单证明。■

评价:比如在平面中,

则是一条平行于
轴穿过
的直线;

在三维坐标,
则是一个平行于
平面穿过
的平面。

这个关系可以直接类比到更高维度的空间里。

定义1.3

的定义

给定
且是整数。定义不等式
为一个实心的
(标准式),记做
中心定义为坐标系的原点。
边界定义为等号成立部分。

评价:以下是一些例子

22a0f487575365e8a0a2a4b95af26db0.png
(2维)正方形的样子

6cb3c35b2ce93a1a5cfdebf42c10f997.png
(3维)立方体形的样子

现在你可以试想一下:

时,图形是怎样的?但是就如我前文所说的,其实
“视觉化”并不必要,所以即使你无法画出一个示意图或者想象出来,你也可以深刻理解什么是4维(以及高维)。
另外要注意的是,
特指其标准式。而
任意旋转,平移后依然是
,但是不一定满足其标准式。

推论1.4
1.

是一个

2.
的边界,由多个
拼接而成。

3. 给定
边界上有
组合而成的
骨架边界,这些称作为
维的边界。

证明:
1.


把以上集合记做

然后考虑 线性映射

,是一个

2.在
共计
个方向上,分别都有一个
作为边界的一部分,组合起来则是全部的边界。

3.因为
也有其
维边界,然后
维边界还有它的边界...数学归纳法可知,直到
维(也就是顶点)。■

评价:其实通过“边界”的“边界”就可以轻松套娃证明出

有所有
作为其边界的一部分(
维可以“包裹住”整个
,更小维度则只是一个
骨架)。
以下是3维立方体的“1维骨架”:

0a5482ca03f70503dcffe28381b778b5.png
立方体的1维骨架

推论1.5
1.

的中心
,必然在某两个顶点连线的中点。

2.
表面上的
,其中心
也必然在某两个顶点连线的中点。

3.
维骨架上的
的中心,其坐标取值必须是

证明:1. 因为中心必然落在“对角线”的中点。
2. 根据1,P必然落在其对应的n-k立方体的“对角线”的中点。
而因为

和其边界上的
共享顶点,所以
也落在某两个顶点的中点。

3.根据2,
维骨架上的
的中心也必然坐落在某两个顶点的连线中点,所以所有坐标的取值可能性为

证毕。■

推论1.6:给定

是其中心。其表面上的
,有两个顶点
,且
的中点
恰好是
的中心(也就是
对角线)。则:

1.

2.

3.

4.
。也就是
的坐标中,坐标值为
的个数恰好是

证明:1. 根据空间坐标系的距离公式


2. 考虑
,由于
,所以这是一个等腰三角形。

是底边
的中点,根据等腰三角形三线合一定理,
既为中线也为垂线,所以

3. 由于
是一个直角三角形,
为直角顶点。

那么

4. 根据 推论1.5第三个结论,我们知道
的坐标只能取值

而根据3我们知道
,当且仅当有
个坐标取值
时等式成立。剩下的坐标取值必须是
,恰好
个。■

定理1.7

的骨架计数定理
中,
维骨架的
的数量是

其中
代表从
个不同样本中不放回不排序,抽取
个样本的方式数量。

证明:由于每一个

和其中心有一一应对关系,所以我们只需要计算其中心的数量即可。

根据 推论1.6的第四个结论,我们知道
的中心
中的坐标必然包含

所以,计算其数量时,可以认为先取出
个坐标为
,然后其他
个坐标分别可以取
,所以数量为
。■

评价:

时,其数量恒等于1,这个对应的是其本体,也只有一个;

时,其数量为
,代表
恰好被
包裹而成的;

时,其数量为
,代表其顶点的个数。

至此,虽然我们并没有直观地想象出
,但是我们却已经对它的一些性质作出了总结和研究。

这也是数学的魅力。

魔方定理1

的魔方,一共有
个表面,总共需要涂上
种颜色。

证明:参考定理1.7。■

评价:对于普通的魔方,我们是选择在其表面上涂颜色;而对于更高维度的

维立方体,我们需要对其
维骨架进行涂色,所以是
种颜色。

魔方定理2:现在考虑一个

,在每个方向我们都把它分层三等份。

这个切割出来以后,就是魔方的初始状态了(严格定义会在后文)。那么:
1.被切割后的“块”可以分为
类,每一类所拥有颜色数量分别为

2.拥有
种颜色的块的数量,与
维骨架的
维立方体数量相同,即

证明:当一个

,每个方向都被均匀分成三份时,
维骨架的
中心会恰好被分到每个小的
中。

5a0bd13fe9d66f2979d203474cefcc01.png
三维情况的图示
  1. 块颜色的数量,会等于这个中心占据了多少个“
    维骨架”的数量,也就是坐标含有多少个
    ,所以颜色的取值范围是
  2. 相同颜色数量的块,包含的中心点的高维立方体是相同维度的,因为其含有的
    是一样多的。根据
    定理1.7,其数量为
    。■

评价:所以,即使你不去想象一个高维魔方的样子,你都可以计算出每一类块的数量,分别他们的种类。所以我再次强调:想理解高维魔方,视觉化的理解是不必要的。

推论1.8

全部维度的骨架中心数量,总和恰好是
,即

证明:魔方定理2的直接推论。■

结语

今天的文章内容,主要是给出了一个

的定义,以及探索其表面的一些性质。我们搞清楚了
维骨架的含义,以及对应的计算方式;并且根据这些内容,我们对
维魔方有了一个初步的认识和划分。

最重要的是,你不再需要担心你会因为不能把高维空间可视化,而导致你看不懂本篇内容了。

上一篇文章:

伍易东:魔方的数学-前言​zhuanlan.zhihu.com

下一篇文章:

伍易东:魔方的数学2-“置换”的定义​zhuanlan.zhihu.com
35727583cd11363186e82de1331cef9e.png
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值