把第二定义还给我嘛...不还给我就只有换个法子玩了.
著名的焦半径公式
推导一(第二定义):

推导二(方程):
以右焦点为例,设点
故
例1:如图,直线

解法一,第二定义:

由定义得
由相似得
解法二,坐标:
故
故
还行,你还我第二定义.
例2:已知椭圆

分析:角条件通常出现在平面几何中,在坐标系中有两种处理思路:
①用线的斜率表示线的夹角的正切,
②转化为适合在坐标系中的条件.
比较容易看出
解:
由相似得
设
则
解得
确实比搞一大堆角在里面直接.
例3:已知椭圆

不分析了,直接整吧
解一:
设
相切得
联立得
求得弦长
前面推导过:
故
周长
解二:
对于椭圆上任意一点
显然交点都在
故
这个内容就到这里.
cancer1984:过焦点的弦---平面几何(椭圆,双曲线)zhuanlan.zhihu.com