三元赫尔德不等式_权方和不等式

本文介绍了如何通过权方和不等式来证明三元赫尔德不等式,详细阐述了三种证明方法,包括原答案的解析法、利用函数凹凸性和琴生不等式,以及直接应用权方和不等式。文中还补充了多个例题以加深理解,并强调了当未知数地位相等时不等式取得最小值的原理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

大家好,我是此意难平。本人浙江高三学生,还处于网络萌新阶段,发现B乎是个学习知识的好地方,第一次写文章,所以(* ̄m ̄)呃呃呃,都加油啦

那么就进入正题

为实数,
,则:

时,等号成立。

此式是柯西不等式的推论,称权方和不等式

题目:已知对所有正实数a,b,c。

求证:

emmm乍一看,完全没什么思路

方法1:(原答案)

不妨记x=

y=
z=

那么

=
;
=
;
=

显然有:

所以(

)

假设

,则 显然


那么与假设矛盾,

所以假设

不成立。

因此

成立。命题得证。

方法2 (码字太累了,接下来用图片(~_~;))

函数的凹凸性以及琴生不等式

dbd3247e47817a68ce18ded153201514.png

关于函数的凹凸性以及琴生不等式

知之子:函数的凹凸性漫谈|高等数学漫步(二)​zhuanlan.zhihu.com
e76992e7c86aebc0fc5111e5accf513a.png
JetfiRex:不等式(4) - 琴生不等式和优超不等式​zhuanlan.zhihu.com

方法3:当然就是权方和不等式了( ´͈ ᵕ `͈ )◞♡

ef0866a19191129f8c23f669a5b22c04.png

如果有其他的方法,欢迎补充

补充:感谢Old Zhang 提供另解

b9b8c31134a02f67685d896dee73f116.png

2020 4.9

之后会陆续的加一些例题,争取在开学前完成

关于评论补充

解题利器:权方和不等式及其应用​www.360doc.com
7acfc8403ac67b18124d5062e1d0cf90.png

补充一下

62c8bf61861cae5f5965a3f7a3c172f1.png

从笔记里找了一些例题,如下

例2.0已知

dfd77d8100d845c567401c86211d33e2.png

bc41d0bab003148a53dd8560f3a77c6b.png

PS:其实是用赫尔德不等式

例2.1

7de7b37cc2a37e35efd46fb5b75b7b22.png

总结:重点是分子的幂指数比分母高一次(敲黑板)

c7a844a7119ba970d8fff5df392ea498.png

例3.

026f6ddc37b295f19e28670d8840f6ad.png

bce8077e665c2a44e99bbccd80b362a3.png

例题4.

8ecde937185b9e6b363ae3385ba23cb2.png

3c927d447a2bb4ca97b753591a64881b.png

同时本题的三元形式就是例题1

例题5.

aa4753a42a73ffe9b1968fd92b8fb0b6.png

6587dba673c6fc8dc8461696843fe50a.png

最后再来一题

163ffb273c38bdec0da05650716399c9.png

同时累加3式得到(当

)

8385e3eda6ba010c1a27659199b70522.png

差不多就这样了emmmm

总结:

  1. 如果细心的话,你们可能已经发现了,加权不等式核心就是权(未知式),而当它们地位相等时最小(x=y=z)(什么叫地位相等~( ̄▽ ̄)~*,就是把x换做y形式也等价)
  2. 它可以避免繁复的计算,小巧玲珑,可能这就是数学的美吧

可能讲的不清楚(仅为个人理解),

a0f601dbbcac3a5535b115cc5dcd1d4e.png

请多包涵

开学前,争取再写一篇关于极线的运用的例子
2020 /4.09 /21.33


PS:发现在专栏上的不等式例题很少,所以emmm

  1. 希望对各位小可爱有帮助

3fa84b7f251b74bd391ecd0808f1cb7f.png

柯西不等式

柯西不等式​mp.weixin.qq.com

赫尔德不等式

赫尔德不等式​mp.weixin.qq.com

n元基本不等式

n元基本不等式1​mp.weixin.qq.com n元基本不等式2​mp.weixin.qq.com

Aczel不等式

Aczel不等式​mp.weixin.qq.com

Aczel-闵科夫斯基不等式

Aczel-闵科夫斯基不等式​mp.weixin.qq.com
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值