大家好,我是此意难平。本人浙江高三学生,还处于网络萌新阶段,发现B乎是个学习知识的好地方,第一次写文章,所以(* ̄m ̄)呃呃呃,都加油啦
那么就进入正题
若
当
此式是柯西不等式的推论,称权方和不等式
题目:已知对所有正实数a,b,c。
求证:
emmm乍一看,完全没什么思路
方法1:(原答案)
不妨记x=
那么
显然有:
所以(
假设
那么与假设矛盾,
所以假设
因此
方法2 (码字太累了,接下来用图片(~_~;))
函数的凹凸性以及琴生不等式

关于函数的凹凸性以及琴生不等式
知之子:函数的凹凸性漫谈|高等数学漫步(二)zhuanlan.zhihu.com
方法3:当然就是权方和不等式了( ´͈ ᵕ `͈ )◞♡

如果有其他的方法,欢迎补充
补充:感谢Old Zhang 提供另解

2020 4.9
之后会陆续的加一些例题,争取在开学前完成
关于评论补充
解题利器:权方和不等式及其应用www.360doc.com
补充一下

从笔记里找了一些例题,如下
例2.0已知


PS:其实是用赫尔德不等式
例2.1

总结:重点是分子的幂指数比分母高一次(敲黑板)

例3.


例题4.


同时本题的三元形式就是例题1
例题5.


最后再来一题

同时累加3式得到(当

差不多就这样了emmmm
总结:
- 如果细心的话,你们可能已经发现了,加权不等式核心就是权(未知式),而当它们地位相等时最小(x=y=z)(什么叫地位相等~( ̄▽ ̄)~*,就是把x换做y形式也等价)
- 它可以避免繁复的计算,小巧玲珑,可能这就是数学的美吧
可能讲的不清楚(仅为个人理解),

请多包涵
开学前,争取再写一篇关于极线的运用的例子
2020 /4.09 /21.33
PS:发现在专栏上的不等式例题很少,所以emmm
- 希望对各位小可爱有帮助

柯西不等式
柯西不等式mp.weixin.qq.com赫尔德不等式
赫尔德不等式mp.weixin.qq.comn元基本不等式
n元基本不等式1mp.weixin.qq.com n元基本不等式2mp.weixin.qq.comAczel不等式
Aczel不等式mp.weixin.qq.comAczel-闵科夫斯基不等式
Aczel-闵科夫斯基不等式mp.weixin.qq.com