泛函分析基础7-2-赋范线性空间6-2:Holder/赫尔德不等式【Young不等式⇒Holder不等式⇒Minkowski不等式】

引理1(赫尔德( Holder)不等式)

p > 1 , 1 p + 1 q = 1 , f ∈ L p [ a , b ] , g ∈ L q [ a , b ] , p > 1 , \frac { 1 } { p } + \frac { 1 } { q } = 1 , f \in L ^ { p } [ a , b ] , g \in L ^ { q } [ a , b ] , p>1,p1+q1=1,fLp[a,b],gLq[a,b],那么 f ( t ) g ( t ) f ( t ) g ( t ) f(t)g(t) [ a , b ] [ a , b ] [a,b] L L L 可积,并且

∫ a b ∣ f ( t ) g ( t ) ∣ d t ⩽ ∥ f ∥ p ∥ g ∥ q . ( 7 ) \int _ { a } ^ { b } | f ( t ) g ( t ) | \mathrm { d } t \leqslant \| f \| _ { p } \| g \| _ { q } .\quad\quad(7) abf(t)g(t)dtfpgq.(7)

证明
首先证明当 p > 1 , 1 p + 1 q = 1 p > 1 , \frac { 1 } { p } + \frac { 1 } { q } = 1 p>1,p1+q1=1时,对任意正数 A A A B , B , B,

A 1 r B 1 q ⩽ A p + B q . ( 8 ) A ^ { \frac { 1 } { r } } B ^ { \frac { 1 } { q } } \leqslant \frac { A } { p } + \frac { B } { q } . \quad\quad(8) Ar1Bq1pA+qB.(8)

事实上,作辅助函数 φ ( t ) = t α − α t ( 0 < t < ∞ ) , 0 < α < 1 , \varphi ( t ) = t ^ { \alpha } - \alpha t ( 0 < t < \infty ) , 0 < \alpha < 1 , φ(t)=tααt(0<t<),0<α<1, φ ′ ( t ) = α [ t α − 1 − 1 ] , \varphi ^ { \prime } ( t ) = \alpha \left[ t ^ { \alpha - 1 } - 1 \right] , φ(t)=α[tα11],所以在 ( 0 , 1 ) ( 0 , 1 ) (0,1)上, φ ′ ( t ) > 0 , \varphi ^ { \prime } ( t ) > 0 , φ(t)>0, ( 1 , ∞ ) ( 1 , \infty ) (1,) φ ′ ( t ) < 0 , \varphi ^ { \prime } ( t ) < 0 , φ(t)<0, 因而 φ ( 1 ) \varphi ( 1 ) φ(1) 是函数 φ ( t ) \varphi ( t ) φ(t) ( 0 , ∞ ) ( 0 , \infty ) (0,) 上的最大值,即

φ ( t ) ⩽ φ ( 1 ) = 1 − α , t ∈ ( 0 , ∞ ) . \varphi ( t ) \leqslant \varphi ( 1 ) = 1 - \alpha , \quad t \in ( 0 , \infty ) . φ(t)φ(1)=1α,t(0,).

由此可得

t α ⩽ α t + ( 1 − α ) , t ∈ ( 0 , ∞ ) . t ^ { \alpha } \leqslant \alpha t + ( 1 - \alpha ) , \quad t \in ( 0 , \infty ) . tααt+(1α),t(0,).

t = A B , t = \frac { A } { B } , t=BA, 代入上面不等式,那么

A a B a ⩽ α A B + ( 1 − α ) . \frac { A ^ { a } } { B ^ { a } } \leqslant \alpha \frac { A } { B } + ( 1 - \alpha ) . BaAaαBA+(1α).

两边乘 B , B , B, 得到

A α B α − 1 ⩽ α A + ( 1 − α ) B . \frac { A ^ { \alpha } } { B ^ { \alpha - 1 } } \leqslant \alpha A + ( 1 - \alpha ) B . Bα1AααA+(1α)B.

α = 1 p , \alpha = \frac { 1 } { p } , α=p1, 1 − α = 1 q , 1 - \alpha = \frac { 1 } { q } , 1α=q1,于是上式成为

A 1 p ⋅ B 1 q ⩽ A p + B q . A ^ { \frac { 1 } { p } } \cdot B ^ { \frac { 1 } { q } } \leqslant \frac { A } { p } + \frac { B } { q } . Ap1Bq1pA+qB.

如果 ∥ f ∥ p = 0 \| f \| _ { p } = 0 fp=0 (或 ∥⁢ g ⁡ ∥ q = 0 , ∥⁢g⁡∥_{q} = 0, ∥⁢gq=0, f ( t ) = 0 a . e . f ( t ) = 0 a . e . f(t)=0a.e. [ a , b ] [ a , b ] [a,b] (或 g ( t ) = 0 a . e . g ( t ) = 0 a . e . g(t)=0a.e. [ a , b ] ) , [ a , b ] ) , [a,b]),这时,不等式(7)自然成立,所以不妨设 ∥ f ∥ p > 0 , ∥ g ∥ q > 0. \| f \| _ { p } > 0 , \| g \| _ { q } > 0 . fp>0,gq>0. 作函数

φ ( t ) = ∣ f ( t ) ∣ ∥ f ∥ p , ψ ( t ) = ∣ g ( t ) ∣ ∥ g ∥ q . \varphi ( t ) = \frac { | f ( t ) | } { \| f \| _ { p } } , \psi ( t ) = \frac { | g ( t ) | } { \| g \| _ { q } } . φ(t)=fpf(t),ψ(t)=gqg(t).

A = ∣ φ ( t ) ∣ p , B = ∣ ψ ( t ) ∣ q , A = | \varphi ( t ) | ^ { p } , B = | \psi ( t ) | ^ { q } , A=φ(t)p,B=ψ(t)q,代人不等式(8),得到

∣ φ ( t ) ψ ( t ) ∣ ⩽ ∣ φ ( t ) ∣ p p + ∣ ψ ( t ) ∣ q q . ( 9 ) | \varphi ( t ) \psi ( t ) | \leqslant \frac { | \varphi ( t ) | ^ { p } } { p } + \frac { | \psi ( t ) | ^ { q } } { q } .\quad\quad(9) φ(t)ψ(t)pφ(t)p+qψ(t)q.(9)

由(9)式立即可知 φ ( t ) ψ ( t ) \varphi ( t ) \psi ( t ) φ(t)ψ(t) [ a , b ] [ a , b ] [a,b] L L L可积,由此可知 f ( t ) g ( t ) f ( t ) g ( t ) f(t)g(t) L L L 可积,对(9)式的两边积分,得到

∫ a b ∣ φ ( t ) ψ ( t ) ∣ d t ⩽ ∫ a b ∣ φ ( t ) ∣ p p   d t + ∫ a b ∣ ψ ( t ) ∣ q q   d t . \int _ { a } ^ { b } | \varphi ( t ) \psi ( t ) | \mathrm { d } t \leqslant \int _ { a } ^ { b } \frac { | \varphi ( t ) | ^ { p } } { p } \mathrm { ~ d } t + \int _ { a } ^ { b } \frac { | \psi ( t ) | ^ { q } } { q } \mathrm { ~ d } t . abφ(t)ψ(t)dtabpφ(t)p dt+abqψ(t)q dt.

因此

∫ a b ∣ f ( t ) g ( t ) ∣ d t ⩽ ∥ f ∥ p ∥ g ∥ q . \int _ { a } ^ { b } | f ( t ) g ( t ) | \mathrm { d } t \leqslant \| f \| _ { p } \| g \| _ { q } . abf(t)g(t)dtfpgq.

  • 3
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值