对数求导法

对于多个函数乘积的求导

y = ( x + 1 ) a ( x − 1 ) b ( 2 x − 1 ) c l n y = a l n ( x + 1 ) + b ( x − 1 ) − c ( 2 x − 1 ) 1 y y ′ = a x + 1 + b x − 1 − c 2 x − 1 y ′ = y [ a x + 1 + b x − 1 − c 2 x − 1 ] = ( x + 1 ) a ( x − 1 ) b ( 2 x − 1 ) c [ a x + 1 + b x − 1 − c 2 x − 1 ] y=\frac{(x+1)^a(x-1)^b}{(2x-1)^{c}}\\ lny=aln(x+1)+b(x-1)-c(2x-1)\\ \frac{1}{y}y'=\frac{a}{x+1}+\frac{b}{x-1}-\frac{c}{2x-1}\\ y'= y [\frac{a}{x+1}+\frac{b}{x-1}-\frac{c}{2x-1}]\\ =\frac{(x+1)^a(x-1)^b}{(2x-1)^{c}} [\frac{a}{x+1}+\frac{b}{x-1}-\frac{c}{2x-1}] y=(2x1)c(x+1)a(x1)blny=aln(x+1)+b(x1)c(2x1)y1y=x+1a+x1b2x1cy=y[x+1a+x1b2x1c]=(2x1)c(x+1)a(x1)b[x+1a+x1b2x1c]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值