
这一篇专门讲分式线性变换,这在后面的共形映射的理论里会有用,而且貌似对古典欧氏几何的理论也挺有用的(?
(说实话,知乎的エロティック图片审查机制我貌似摸清楚了)
所谓分式线性变换,或者说Möbius变换,是指复变函数
如果
作为分式线性变换的第一个性质,我们有
定理(保角性) 分式线性变换是保角变换。
注意到
接下来我们会证明更多的性质。
保圆性,交比
首先我们来证明:
定理(保圆性) 分式线性变换把
注意,所谓中的圆周是指圆周或者直线,半径无穷大的圆周。
先证明两种特殊情况,再证明一般情况。
1.整线性变换
这时候设
第一个是旋转变换,第二个是伸缩变换,第三个是平移变换,三种变换都把圆周变成圆周。
在古典几何里,整线性变换就是顺相似变换。
2.变换
任何一个圆,无论是普通的圆还是直线,其在复平面内的方程都是下面的形式:
其中
这里的变换实际上是对称变换与后面会提到的反演变换的复合。
3.一般情况
考虑
这三个变换都已经