复变函数论(七)-共形映射2-分式线性变换6:分式线性变换的应用

分式线性变换在处理边界为圆弧或直线的区域的变换中,具有很大的作用.

下面三例就是反映这个事实的重要特例.

例 7.5
把上半 z z z 平面共形映射成上半 w w w 平面的分式线性变换可以写成

w = a z + b c z + d , w=\frac{a z+b}{c z+d}, w=cz+daz+b,

其中 a , b , c , d a, b, c, d a,b,c,d 是实数,且满足条件

a d − b c > 0. a d-b c>0 . adbc>0.

事实上, 所述变换将实轴变为实轴, 且当 z z z 为实数时

d w   d z = a d − b c ( c z + d ) 2 > 0 , \frac{\mathrm{d} w}{\mathrm{~d} z}=\frac{a d-b c}{(c z+d)^{2}}>0,  dzdw=(cz+d)2adbc>0,

即实轴变成实轴是同向的 (如图 7.9), 因此上半 z z z 平面共形映射成上半 w w w平面.

在这里插入图片描述
当然,这也可以直接由下面的推导看出:

Im ⁡ w = 1 2 i ( w − w ˉ ) = 1 2 i ( a z + b c z + d − a z ˉ + b c z ˉ + d ) = 1 2 i a d − b c ∣ c z + d ∣ 2 ( z − z ˉ ) = a d − b c ∣ c z + d ∣ 2 Im ⁡ z . \begin{aligned} \operatorname{Im} w & =\frac{1}{2 \mathrm{i}}(w-\bar{w})=\frac{1}{2 \mathrm{i}}\left(\frac{a z+b}{c z+d}-\frac{a \bar{z}+b}{c \bar{z}+d}\right) \\ & =\frac{1}{2 \mathrm{i}} \frac{a d-b c}{|c z+d|^{2}}(z-\bar{z})=\frac{a d-b c}{|c z+d|^{2}} \operatorname{Im} z . \end{aligned} Imw=2i1(wwˉ)=2i1(cz+daz+bczˉ+dazˉ+b)=2i1cz+d2adbc(zzˉ)=cz+d2adbcImz.

注 满足条件 (7.12) 的分式线性变换也将下半平面共形映射成下半平面.

例 7.6
求出将上半平面 Im ⁡ z > 0 \operatorname{Im} z>0 Imz>0 共形映射成单位圆 ∣ w ∣ < 1 |w|<1 w<1的分式线性变换, 并使上半平面一点 z = a ( Im ⁡ a > 0 ) z=a(\operatorname{Im} a>0) z=a(Ima>0) 变为 w = 0 w=0 w=0.


根据分式线性变换保对称点的性质, 点 a a a 关于实轴的对称点 a ˉ \bar{a} aˉ应该变到 $w=$0 关于单位圆周的对称点 w = ∞ w=\infty w=. 因此, 这个变换应当具有形式:

w = k z − a z − a ˉ , w=k \frac{z-a}{z-\bar{a}}, w=kzaˉza,

其中 k k k 是常数. k k k 的确定可使实轴上的一点,例如 z = 0 z=0 z=0,变到单位圆周上的一点

w = k a a ˉ . w=k \frac{a}{\bar{a}} . w=kaˉa

  • 25
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值