w = a z + b c z + d , ∣ a b c d ∣ = a d − b c ≠ 0 w=\frac{a z+b}{c z+d}, \quad\left|\begin{array}{ll} a & b \\ c & d \end{array}\right|=a d-b c \neq 0 w=cz+daz+b, acbd =ad−bc=0
称为分式线性变换,简记为 w = L ( z ) w=L(z) w=L(z).
条件 a d − b c ≠ 0 a d-b c \neq 0 ad−bc=0 是必要的, 否则将导致 L ( z ) L(z) L(z) 恒为常数.
此外,我们将 (7.3) 在扩充 z z z 平面上做如下补充定义:
如 c ≠ 0 c \neq 0 c=0, 在 z = − d c z=-\frac{d}{c} z=−cd 处定义 w = ∞ w=\infty w=∞, 在 z = ∞ z=\infty z=∞处定义 w = a c w=\frac{a}{c} w=