复变函数论(七)-共形映射2-分式线性变换1:分式线性变换及其分解

本文详细介绍了分式线性变换,包括w=cz+daz+b的形式,以及其在扩充复平面的定义。重点讨论了分式线性变换如何分解为整线性变换和反演变换,并分析了这两种变换的几何意义,如旋转、伸缩和平移。此外,还阐述了分式线性变换的不动点性质和它们如何保持图形的方向不变。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

w = a z + b c z + d , ∣ a b c d ∣ = a d − b c ≠ 0 w=\frac{a z+b}{c z+d}, \quad\left|\begin{array}{ll} a & b \\ c & d \end{array}\right|=a d-b c \neq 0 w=cz+daz+b, acbd =adbc=0

称为分式线性变换,简记为 w = L ( z ) w=L(z) w=L(z).

条件 a d − b c ≠ 0 a d-b c \neq 0 adbc=0 是必要的, 否则将导致 L ( z ) L(z) L(z) 恒为常数.

此外,我们将 (7.3) 在扩充 z z z 平面上做如下补充定义:

c ≠ 0 c \neq 0 c=0, 在 z = − d c z=-\frac{d}{c} z=cd 处定义 w = ∞ w=\infty w=, 在 z = ∞ z=\infty z=处定义 w = a c w=\frac{a}{c} w=

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值