SLAM学习笔记(三)

刚体是指在运动中和受力作用后,形状和大小不变,而且内部各点的相对位置不变的物体。绝对刚体实际上是不存在的,只是一种理想模型,因为任何物体在受力作用后,都或多或少地变形,如果变形的程度相对于物体本身几何尺寸来说极为微小,在研究物体运动时变形就可以忽略不计。刚体不光有位置,还有自身的姿态。

在三维空间中如何描述刚体呢?

旋转矩阵

基下的坐标

a在基下的坐标为

内积

外积

外积的方向垂直于这两个向量,大小为 |a||b|sin〈a,b〉,是两个向量张成的四边形的 有向面积。对于外积,我们引入了 ∧ 符号,把 a 写成一个矩阵。事实上是一个反对称矩阵 (Skew-symmetric),你可以将 ∧ 记成一个反对称符号。这样就把外积 a×b,写成了矩阵 与向量的乘法 a∧b,把它变成了线性运算。

注:i,j,k代表坐标系,求a×b的行列式的值,得到中间的矩阵,在经过一系列变换得到最终的结果。

坐标系间的欧氏变换

坐标系之间的变换包括:旋转与平移。


 

相机运动是一个刚体运动,它保证了同一个向量在各个坐标系下的长度和夹角都不会发生变化,这种变换称为欧氏变换。首先来考虑旋转。我们设某个单位正交基 经过一次旋转,变成了。那么,对于同一个向量 a(注意该向量并没有随着坐标系的旋转而发生运动),它在两个坐标系下的坐标为。 根据坐标的定义,有: 

 

对(3.4)式两边同时左乘得下式:

我们把中间的阵拿出来,定义成一个矩阵 R(旋转矩阵)。这个矩阵由两组基之间的内积组成,刻画了旋转前后同一个向量的坐标变换关系。

注:旋转矩阵的性质:它是一个行列式为 1 的正交矩阵(正交矩阵即逆为自身转置的矩阵)。

旋转矩阵的集合定义如下:

SO(n) 是特殊正交群(Special Orthogonal Group)的意思(李群李代数那张专门讲述)。

由于旋转矩阵为正交阵,它的逆(即转置)描述了一个相反的旋转。按照上面的定义方式,有:

刻画了一个相反的旋转

考虑世界坐标系中的向量 a,经过一次 旋转(用 R 描述)和一次平移 t 后,得到了 a′,那么把旋转和平移合到一起,有:


变换矩阵与齐次坐标

(3.8)的形式在变换多次之后会过于复杂。因此,我们要引入齐次坐标和变换矩阵重写 式(3.8): 

这是一个数学技巧:我们把一个三维向量的末尾添加 1,变成了四维向量,称为齐次 坐标。该式中,矩阵 T 称为变换矩阵(Transform Matrix)。我们暂时用表 示 a 的齐次坐标。

这时,忽略掉最后一项,这个点的坐标和欧氏空间就是一样的。依靠齐次坐标和变换矩阵,两次变换的累加就可以有很好的形式:
 

在不引起歧义的情况下,以后我们就直接把它写成 b = Ta 的样子,默认其中是齐次坐标了。关于变换矩阵 T,它具有比较特别的结构:左上角为旋转矩阵,右侧为平移向量,左 下角为 0 向量,右下角为 1。这种矩阵又称为特殊欧氏群(Special Euclidean Group): 

最后,为了保持符号的简洁,在不引起歧义的情况下,我们以后不区别齐次坐标与普 通的坐标的符号,默认我们使用的是符合运算法则的那一种。例如,当我们写 Ta 时,使 用的是齐次坐标(不然没法计算)。而写 Ra 时,使用的是非齐次坐标。如果写在一个等 式中,我们就假设齐次坐标到普通坐标的转换,是已经做好了的——因为齐次坐标和非齐 次坐标之间的转换事实上非常容易。 

以上笔记源自《视觉SLAM十四讲》

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值