复合函数求导定义证明_【“数”你好看】求导

本文详细介绍了导数的定义,包括从第一原理出发的求导方式,以及导数的四则运算和复合函数求导法则(链式法则)。通过实例推导常见函数的导数公式,强调理解基础定义的重要性,以便于应用到微积分的其他领域,如求切线、极值等。文章鼓励读者主动推导和讨论,提供了一种学习微积分的思路。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

9c11eb24b9481e0969462a5085a49a25.png

微积分的核心是极限(Limit)求导(Derivative)是微积分的重要内容,本质就是求极限。导数公式有很多, 靠死记还是比较麻烦的,但这又是微积分的基础,不然接下去导数的应用(求切线、求法线、增减性、求极值、求凹凸性等)都没法学,更不用说导数的逆运算——求积分了。所以本文想系统的梳理一下求导法则常见函数求导公式争取利用最少的知识把下面公式都推导出来。

2d2e153a56fdef9bdb26d9d4415769fa.png
图:常见函数求导公式

一、导数的定义

2bb4521d67d7189b59059503c13999ed.png

AB弦的斜率是

,当B点不断向A点靠近时,AB弦的斜率就变成了
在点A处的切线斜率(
可以类比平均速度和瞬时速度),可以得到求导公式:

(Differentiation from first principle)

也可以用如下公式求

处的切线斜率:

那么根据上述定义,我们计算几个常见的求导公式。

(1)

(2)


因为

所以

(3)

注:

(4)

注:

(5)


又因为

所以

的导数等于其本身乘以在
处的导数,那么什么时候
的导数等于其本身呢?即
,

这里,令

,

所以

那么

注:根据

结合后面复合函数求导法则可以推导出

如果

不能理解,可以考虑推导
,然后再利用反函数求导得到

二、导数的四则运算及复合函数求导(The chain rule)

是关于x的两个可导函数,则
Scalar muptiplication rule:

Addition rule:

The product rule:

The quotient rule:

对于

直接根据定义就可以证明了,比较容易,下面证明求导的乘法与除法公式。

(1)The product rule

(2)The quotient rule

根据导数的乘法与除法法则,我们就可以计算

比如下面计算一下

其他三个也可以类似的推导得到,所以只需要记住

就够了。

接下去讲一个非常重要的复合函数求导——链式法则(The chain rule)

处可导,且
处可导,则复合函数
的求导结果为:
.

用莱布尼兹表示,若

都是可导函数,则

学了链式法则,那么我们就可以推导


则根据
和链式法则有

三、隐函数求导

把能够写成

的函数称为显函数,但是有些情况下如
我们不能把x,y分离开,只知道x,y存在一定的关系
,把这样的称为隐函数。隐函数求导就是对
两边同时对x进行求导,且在求导过程中把y看成是一个关于x的函数,求导完成后只需要把
分离开来就得到了y关于x的导数。

接下去我们根据隐函数求导来推导一下求导公式表中的剩下公式。

(1)

,则
,两边对x进行求导可得:
,那么

又因为
,

所以

那么我们也可以知道

类似的我们也可以算得剩下三个反三角函数的导数

(2)

,则
,两边对x求导可得
,

又因为

所以

也可以类似得到,其中要用到两个三角恒等式

总结,我们通过导数的定义,推导了导数四则运算法则、链式法则,以及借助隐函数求导,把常见函数求导公式都推导了一遍。所以我们只需要记忆一些最基本的定义、最常见的函数求导就够了,其它复杂的忘记了现推一下也很快知道了。

这是我认为的推导常见函数求导公式比较顺的一个思路,可能还有更好的,欢迎交流讨论~

想了解更多国际数学课程知识,可参阅:

双木止月Tong:【国际数学课程】目录​zhuanlan.zhihu.com
5adb4b6edc3c3d8307f7d0213d44d4b2.png
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值