
微积分的核心是极限(Limit),求导(Derivative)是微积分的重要内容,本质就是求极限。导数公式有很多, 靠死记还是比较麻烦的,但这又是微积分的基础,不然接下去导数的应用(求切线、求法线、增减性、求极值、求凹凸性等)都没法学,更不用说导数的逆运算——求积分了。所以本文想系统的梳理一下求导法则及常见函数求导公式,争取利用最少的知识把下面公式都推导出来。

一、导数的定义

AB弦的斜率是
(Differentiation from first principle)
也可以用如下公式求
那么根据上述定义,我们计算几个常见的求导公式。
(1)
(2)
![]()
因为![]()
所以![]()
(3)
注:
(4)
注:
(5)
![]()
又因为![]()
所以![]()
这里,令
所以
那么
注:根据
如果
二、导数的四则运算及复合函数求导(The chain rule)
设
Scalar muptiplication rule:![]()
Addition rule:![]()
The product rule:![]()
The quotient rule:![]()
对于
(1)The product rule
(2)The quotient rule
根据导数的乘法与除法法则,我们就可以计算
比如下面计算一下
其他三个也可以类似的推导得到,所以只需要记住
接下去讲一个非常重要的复合函数求导——链式法则(The chain rule):
若
用莱布尼兹表示,若
学了链式法则,那么我们就可以推导
![]()
则根据和链式法则有
![]()
三、隐函数求导
把能够写成
接下去我们根据隐函数求导来推导一下求导公式表中的剩下公式。
(1)
,则
,两边对x进行求导可得:
,那么
。
又因为,
所以![]()
那么我们也可以知道
类似的我们也可以算得剩下三个反三角函数的导数
(2)
,则
,两边对x求导可得
,
![]()
又因为![]()
所以![]()
总结,我们通过导数的定义,推导了导数四则运算法则、链式法则,以及借助隐函数求导,把常见函数求导公式都推导了一遍。所以我们只需要记忆一些最基本的定义、最常见的函数求导就够了,其它复杂的忘记了现推一下也很快知道了。
这是我认为的推导常见函数求导公式比较顺的一个思路,可能还有更好的,欢迎交流讨论~
想了解更多国际数学课程知识,可参阅:
双木止月Tong:【国际数学课程】目录zhuanlan.zhihu.com