LQ优化控制Matlab,基于Matlab的LQ控制器的设计与仿真研究

本文探讨了基于Matlab的线性二次型(LQ)最优控制器设计和仿真方法,适用于动力系统控制。通过状态反馈和黎卡蒂方程解决LQ问题,实现简单、快速的参数调整,并通过Matlab进行仿真,验证了设计的系统在响应速度和精度上的优越性。
摘要由CSDN通过智能技术生成

第24卷第4期2010年7月甘肃联合大学学报(自然科学版)

Jour nal of G ansu Lianhe U niver sity (N atural Sciences)V o l.24No.4

Jul.2010

收稿日期:2010 03 20.

作者简介:刘悦婷(1979 ),女,陕西临潼人,甘肃联合大学讲师,在读硕士研究生,主要从事电子、自动控制等方面的教学与科研.

文章编号:1672 691X(2010)04 0052 03

基于M atlab 的LQ 控制器的设计与仿真研究

刘悦婷

(甘肃联合大学电子信息工程学院,甘肃兰州730000)

摘 要:提出了一种具有状态反馈的线性二次型(L Q )最优控制器的设计与仿真方法.该控制系统适用于燃料电池轿车动力系统、火电厂动力系统以及其他领域的动力系统控制.其算法简单、参数调整方便、快捷.并借助于M at lab [1]语言编程、仿真输出.理论分析和仿真结果表明,应用这种方法设计出的系统,在响应速度和稳态精度方面均优于无L Q 控制的系统.该研究具有一定的实用价值,控制效果很好.关键词:LQ 控制器;最优控制[2];状态反馈;黎卡蒂方程[3];仿真中图分类号:T P391.9 文献标识码:A

0 引言

最优控制是现代控制理论的核心,它研究的主要问题是:在满足一定约束条件下,寻求最优控制策略[3]

,使得性能指标取极大值或极小值.研究最优控制问题有力的数学工具是变分理论,而经典变分理论只能够解决控制无约束的问题,但是工程实践中的问题大多是控制有约束的问题,因此出现了现代变分理论,即动态规划法、极小值原理、线性二次型控制法等解决最优控制问题的解析法.而线性二次型最优控制中具有状态反馈的线性二次型最优控制,即LQ 问题.对于线性系统的控制器设计问题,如果其性能指标是状态变量或控制变量的二次型函数的积分,则这种动态系统的最优化问题称为线性系统二次型性能指标的最优控制问题,简称为线性二次型最优控制问题.线性二次型问题的最优解可以写成统一的解析

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值