ubuntu18.04上cuda及cudnn安装

目录

1、准备工作

2、安装cuda(GPU加速)

3、安装cudnn(GPU加速库)

4、显卡信息查询相关指令

4.1、查看显卡信息

4.2、查看驱动信息

4.3、实时查看GPU的使用情况


系统环境:ubuntu18.04、cuda11.0、driver450、cudnn8.5。

1、准备工作

       首先需要安装一些基本的组件,否则后面安装cuda会失败(比方会因为缺失gcc/g++/cc等编译工具安装cuda失败等等),ubuntu处事环境设置,所以先执行下面的命令:

       安装开发包 打开终端输入:

# 系统升级
sudo apt-get update -y
sudo apt-get upgrade -y
# 安装python基础开发包
sudo apt install -y python-dev python-pip python-nose gcc g++ git gfortran vim build-essential

        安装运算加速库 打开终端输入:

sudo apt install -y libopenblas-dev liblapack-dev libatlas-base-dev

2、安装cuda(GPU加速)

step1、下载文件

       下载地址:https://developer.nvidia.com/cuda-downloads ,这里选择runfile(local)类型文件安装。

       当前页只有最新版本,早期版本在下面链接中。

       点开后,cuda对应平台各个版本下载地址:

CUDA Toolkit Archive | NVIDIA Developer

       这里,下载11.0版本。

step2、安装cuda

chmod 777 cuda_11.0.3_450.51.06_linux.run # 修改权限 
sudo ./cuda_11.0.3_450.51.06_linux.run # 运行安装

       按照提示依次安装,不要安装OpenGL。这里建议驱动和cuda分开装,这里不用再装驱动,文档也没必要,毕竟有在线文档。

       安装完成后,提示:

       显示了安装路径及log,需要确保的路径配置。

step3、将CUDA路径添加至环境变量,在终端输入

sudo gedit ~/.bashrc

       在.bashrc文件中添加:

# cuda path
# ln -s /usr/local/cuda-11.0 /usr/local/cuda #建立软链接
export CUDA_HOME=/usr/local/cuda
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda/lib64
export PATH=$PATH:/usr/local/cuda/bin

       之后source ~/.bashrc即可。

step4、CUDA的samples测试

cd /usr/local/cuda/samples/1_Utilities/deviceQuery
sudo make
sudo ./deviceQuery

step5、测试是否安装正确

       在终端输入:nvcc -V

       会得到相应的nvcc编译器相应的信息,那么CUDA配置成功了。(记得重启系统)

       删除缓存安装包:apt-get autoremove

3、安装cudnn(GPU加速库)

       cudnn下载路径:cuDNN Archive | NVIDIA Developer

       选择与cuda版本匹配的cudnn版本,这里选8.0.5版本。

       点击后,显示对应文件:

       这里选动态库安装,点击下载,deb方式卸载更新起来不太方便。

       解压cudnn-11.0-linux-x64-v8.0.5.39.tgz,然后用如下命令解压:

tar -xzvf cudnn-11.0-linux-x64-v8.0.5.39.tgz

       拷贝.h 和 libs文件到cuda安装目录,并给予执行权限:

sudo cp -d cuda/include/cudnn*.h /usr/local/cuda/include/
sudo cp -d cuda/lib64/libcudnn* /usr/local/cuda/lib64/
sudo chmod a+r /usr/local/cuda/include/cudnn*.h /usr/local/cuda/lib64/libcudnn*

       测试cudnn:

       cudnn版本是卸载CUDNN_MAJOR这宏中。

       7.6以前在cudnn.h中:

cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2

        8.0后在cudnn_version.h中:

cat /usr/local/cuda/include/cudnn_version.h | grep CUDNN_MAJOR -A 2

4、显卡信息查询相关指令

4.1、查看显卡信息

       lspci | grep VGA # 查看显卡信息

4.2、查看驱动信息

       ubuntu-drivers devices #查看驱动信息

4.3、实时查看GPU的使用情况

       watch -n 1 nvidia-smi # 在终端输入命令,实时查看GPU的使用情况,每隔一秒刷新一次

Ubuntu 18.04虚拟机环境中尝试安装NVIDIA显卡驱动会遇到诸多挑战,因为虚拟环境并不支持直接安装此类硬件特定的驱动程序[^1]。 然而,如果仍然希望优化GPU性能或配置相关设置,在宿主机已经正确安装并配置好NVIDIA GPU的情况下,可以通过如下方式间接实现目标: ### 前提条件 - 宿主机需已成功安装适用于其操作系统的NVIDIA驱动。 - 使用支持GPU直通技术的hypervisor软件,比如VirtualBox(通过扩展包)、VMware Workstation Pro等。请注意,并不是所有的虚拟化解决方案都提供此功能。 - 确认所使用的Linux内核版本兼容于当前安装的NVIDIA驱动版本[^2]。 ### 实现方案 由于直接在虚拟机内部署NVIDIA驱动不可行,推荐采用以下替代策略之一来利用GPU资源: #### 方案一:使用CUDA Toolkit与Docker容器 对于需要访问GPU的应用场景,可以考虑部署带有预装CUDA工具集的Docker镜像。这种方法绕过了直接修改操作系统的需求,提供了更灵活且安全的方式来进行开发测试工作。 ```bash sudo apt-y docker.io nvidia-container-toolkit sudo systemctl restart docker docker pull nvcr.io/nvidia/cuda:11.7.1-base-ubuntu18.04 ``` 上述命令用于安装必要的组件以及拉取官方提供的基础CUDA镜像文件。 #### 方案二:启用VirtIO-GPU Passthrough (仅限部分Hypervisors) 某些高级别的虚拟化平台允许将物理GPU设备传递给客户机操作系统直接控制。这一过程通常涉及BIOS/UEFI级别的调整以及其他复杂的配置更改。因此,除非具备充分的技术背景必要硬件设施,否则不建议普通用户轻易尝试该途径。 ### 常见问题处理 当面对因误操作而导致系统异常的情况时,可参照下述指导恢复至正常状态: - 如果发现启动过程中出现问题,尝试切换到纯文本模式(TTY),并通过`nomodeset`参数引导加载器(Grub)临时禁用专有视频驱动初始化。 - 对于由更新引起的冲突,移除现有NVIDIA模块(`apt purge nvidia*`)后再重新评估下一步行动方向。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

jingbo1801

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值