ubuntu18.04系统安装cuda、cudnn

1.安装Nvidia显卡驱动

1.1添加源并更新

sudo add-apt-repository ppa:graphics-drivers/ppa
sudo apt-get update

1.2查询网卡驱动

ubuntu-drivers devices

在这里插入图片描述1.3安装

sudo apt-get install nvidia-driver-510-server

1.4验证安装

nvidia-smi

在这里插入图片描述

2.安装cuda

2.1查看显卡驱动版本对应的cuda版本
官网链接:https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html
在这里插入图片描述我NVIDIA-SMI 510.47.03下的cuda10.2版本,根据自己需求选择版本
2.2下载并安装cuda
官网链接:https://developer.nvidia.com/cuda-toolkit-archive
在这里插入图片描述打开终端执行:

wget https://developer.download.nvidia.com/compute/cuda/10.2/Prod/local_installers/cuda_10.2.89_440.33.01_linux.run

#下载完后执行:sudo sh cuda_10.2.89_440.33.01_linux.run
会有界面弹出,如果你在之前安装好了显卡驱动,会让你移除并重新安装,因此我没有使用这个指令安装,我使用的是这个指令:通过加参数,在安装的过程中可能就不会检测驱动,然后成功安装

sudo bash cuda_10.2.89_440.33.01_linux.run --toolkit --silent --override

2.3添加环境变量
打开~/.bashrc,根据自己的路径添加:

# cuda
export PATH="/usr/local/cuda-10.2/bin:$PATH"
export LD_LIBRARY_PATH="/usr/local/cuda-10.2/lib64:$LD_LIBRARY_PATH"

让配置生效:source ~/.bashrc
2.4验证安装

nvcc -V

在这里插入图片描述

3.安装cudnn

官网链接:https://developer.nvidia.com/rdp/cudnn-archive
3.1下载
一定要选择跟自己cuda版本匹配的!我选择的是cudnn8.1.0,点击下载
在这里插入图片描述3.2安装

#解压
tar -xzvf  cudnn-10.2-linux-x64-v8.1.0.77.tgz
#会在当前文件夹下生成一个名为cuda的文件夹,将里面的文件拷贝到cuda的安装目录下
sudo cp  cuda/lib64/libcudnn* /usr/local/cuda-10.2/lib64/
sudo cp  cuda/include/cudnn* /usr/local/cuda-10.2/include/
#修改权限
sudo chmod a+r /usr/local/cuda-10.2/include/cudnn.h 
sudo chmod a+r /usr/local/cuda-10.2/lib64/libcudnn*

3.3验证安装

cat /usr/local/cuda/include/cudnn_version.h | grep CUDNN_MAJOR -A 2

在这里插入图片描述参考连接:
https://blog.csdn.net/weixin_43563233/article/details/114385130
https://blog.csdn.net/wenroudebaozi/article/details/114582502
https://shliang.blog.csdn.net/article/details/108994449

### 配置 CUDAcuDNN 的详细说明 #### 一、环境准备 在开始安装之前,需确认已成功部署 Ubuntu 18.04 虚拟机并完成基础配置。具体操作可参考提供的虚拟机下载与配置流程文档[^1]。 #### 二、NVIDIA 显卡驱动安装 为了支持 GPU 加速功能,在安装 CUDA 前需要先安装适合的 NVIDIA 显卡驱动程序。以下是推荐的操作步骤: 1. 更新系统软件包列表: ```bash sudo apt update && sudo apt upgrade -y ``` 2. 添加官方显卡驱动仓库并安装最新稳定版驱动: ```bash sudo add-apt-repository ppa:graphics-drivers/ppa sudo apt update sudo ubuntu-drivers autoinstall ``` 3. 完成后重启计算机以加载新驱动: ```bash sudo reboot ``` 验证驱动是否正常工作可以通过命令 `nvidia-smi` 查看当前 GPU 使用状态以及所使用的驱动版本号[^2]。 #### 三、CUDA 工具包安装 按照以下方法可以顺利完成 CUDA安装过程: 1. 下载对应平台架构下的 CUDA Toolkit 运行文件(如 cuda_11.4.1_470.57.02_linux.run),或者通过官网链接获取最新的 Linux 版本镜像; 2. 授权执行权限并对脚本运行初始化设置向导模式: ```bash chmod +x ./cuda*.run sudo sh ./cuda*.run --override ``` 注意:如果遇到依赖关系冲突等问题,则尝试添加参数选项覆盖默认检测逻辑。 #### 四、cuDNN 库集成 对于深度学习框架而言,除了基本计算能力外还需要额外引入优化后的神经网络运算单元——即 cuDNN 支持库。其主要作用在于提升卷积层处理效率等方面表现优异。 1. 访问 NVIDIA 开发者门户网站登录账户后进入 cuDNN 页面找到匹配目标系统的压缩包资源; 2. 解压获得的内容通常包括头文件目录(`include`)和动态共享对象(.so)形式的目标模块集合(`lib64`)两部分组成; 3. 将上述解压路径中的子项分别复制到全局可见的标准位置下: ```bash sudo cp include/cudnn*.h /usr/local/cuda/include/ sudo cp lib64/libcudnn* /usr/local/cuda/lib64/ sudo chmod a+r /usr/local/cuda/include/cudnn*.h /usr/local/cuda/lib64/libcudnn* ``` 最后一步非常重要因为它赋予所有用户读取这些新增组件的权利从而避免后续编译阶段可能出现访问受限错误提示信息出现的情况发生[^3]。 #### 五、验证安装成果 完成全部准备工作之后可通过如下方式检验整个链路搭建状况良好与否: - 测试 CUDA 是否可用: ```bash nvcc --version nvidia-smi ``` - 查询 cuDNN 当前激活的具体分支代次详情(适用于 v8 及以后发行序列): ```bash cat /usr/include/dlpack/dlpack.h | grep DLPACK_MAJOR_VERSION ``` --- ###
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值