不小心删了,先补上。内容比较旧了,也没时间再审查。不对之处,请多包涵。
近年来动态地图和语义地图好像在SLAM领域比较热,动态物体一直是个敏感的问题。当年计算机视觉唯一的工业落地场景“视觉监控”也在这个问题费了脑筋,比如我搬个凳子到新位置,然后就走了,系统是不是要自动更新背景呢?
以前说过SFM和SLAM的称呼,计算机视觉的同行多半说SFM,而机器人的行业流行说SLAM,到底区别在哪里?有说SFM是假设背景不动,那么outlier是什么?当年做IBR(image-based rendering)的时候,以panorama view为例,也是假设场景物体不动,可总是有不静止的物体,比如水,比如树叶,甚至不配合的人们走动,会产生鬼影吗?结果也提出了一堆的解决方法。SFM和MVG(multiple view geometry)紧密相关吧,都面临计算机视觉的共同问题,动态环境是回避不了的。
景物动态部分不一定是object,或者不一定能得到object,所以不一定是语义的。语义地图不一定就是动态的,所以语义地图和动态地图是有重叠的,不过最近深度学习的发展比如语义分割,目标检测和跟踪等等的确使二者渐渐走在了一起。在人的眼中,一切都是语义的存在,尽管对某些部分认识不够。
这里我还是把SLAM动态地图和语义SLAM分开,主要是文章太多。
先列个题目,动态地图放在上部分,而语义地图放下部分。
先推荐一篇ACM Computing Survey发表于2018年2月的综述文章“Visual SLAM and Structure from Motion in Dynamic Environments: A Survey“,它对动态环境的分析可以参考一下。
讨论的方法基本分三大类:一定位和重建为主,二动态目标分割和跟踪为主,三运动分割与重建联合估计的方法。
下图给出了各种方法之间的联系:
第一类 “A)Robust Visual SLAM”,下图给出框图结构:
第二类 “B)Dynamic Object Segmentation and 3D Tracking“ ,同样的,其框架图如下:
第三类 “C)Joint Motion Segmentation and Reconstruction“,其特性见下图:
在这三类方法中都有深度学习的部分。
下面选一些论文作为参考(注:次序没有按时间排列)。
1.Simultaneous Localization and Mapping with Detection and Tracking of Moving Objects
看上面的系统流程图,典型的方法:运动分割,运动目标检测和跟踪,静态目标和静态地图。
2.Simultaneous Localization and Mapping with Moving Object Tracking in 3D Range Data