语义slam_SLAM的动态地图和语义问题 (上)

本文探讨了SLAM在动态环境中的挑战,包括动态地图与语义地图的融合。作者提到了视觉SLAM和结构从运动在动态环境中的综述文章,并概述了针对动态目标的定位、分割、跟踪和重建方法。文章列举了多项研究,展示了不同技术如粒子滤波、蒙特卡洛定位、NDT映射等在处理动态SLAM问题上的应用。
摘要由CSDN通过智能技术生成

6053af2c9bbb614ad8987306742714de.png

不小心删了,先补上。内容比较旧了,也没时间再审查。不对之处,请多包涵。


近年来动态地图和语义地图好像在SLAM领域比较热,动态物体一直是个敏感的问题。当年计算机视觉唯一的工业落地场景“视觉监控”也在这个问题费了脑筋,比如我搬个凳子到新位置,然后就走了,系统是不是要自动更新背景呢?

以前说过SFM和SLAM的称呼,计算机视觉的同行多半说SFM,而机器人的行业流行说SLAM,到底区别在哪里?有说SFM是假设背景不动,那么outlier是什么?当年做IBR(image-based rendering)的时候,以panorama view为例,也是假设场景物体不动,可总是有不静止的物体,比如水,比如树叶,甚至不配合的人们走动,会产生鬼影吗?结果也提出了一堆的解决方法。SFM和MVG(multiple view geometry)紧密相关吧,都面临计算机视觉的共同问题,动态环境是回避不了的。

景物动态部分不一定是object,或者不一定能得到object,所以不一定是语义的。语义地图不一定就是动态的,所以语义地图和动态地图是有重叠的,不过最近深度学习的发展比如语义分割,目标检测和跟踪等等的确使二者渐渐走在了一起。在人的眼中,一切都是语义的存在,尽管对某些部分认识不够。

这里我还是把SLAM动态地图和语义SLAM分开,主要是文章太多。

先列个题目,动态地图放在上部分,而语义地图放下部分。


先推荐一篇ACM Computing Survey发表于2018年2月的综述文章“Visual SLAM and Structure from Motion in Dynamic Environments: A Survey“,它对动态环境的分析可以参考一下。

讨论的方法基本分三大类:一定位和重建为主,二动态目标分割和跟踪为主,三运动分割与重建联合估计的方法。

c3ff7770be558a3c9aa1f4e437696bc3.png

下图给出了各种方法之间的联系:

ed3ca241c49256b45e1a08dca3c550ef.png

第一类 “A)Robust Visual SLAM”,下图给出框图结构:

3f58106cb06261309ce1154cb40a215d.png

第二类 “B)Dynamic Object Segmentation and 3D Tracking“ ,同样的,其框架图如下:

f2b18a9c4fba9f5c9d72660bca9f90b3.png

第三类 “C)Joint Motion Segmentation and Reconstruction“,其特性见下图:

c835546b3bee8d6a6c239c132fd7eea9.png

在这三类方法中都有深度学习的部分。

下面选一些论文作为参考(注:次序没有按时间排列)。


1.Simultaneous Localization and Mapping with Detection and Tracking of Moving Objects

5921a0ca01d859066e9326f29a69e686.png

看上面的系统流程图,典型的方法:运动分割,运动目标检测和跟踪,静态目标和静态地图。

2.Simultaneous Localization and Mapping with Moving Object Tracking in 3D Range Data

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值