伽利略悖论
考虑一个问题:
集合
N
表示所有自然数:
集合
E
表示所有偶数:
N
与
集合
S
的元素的个数也叫做集合的基或者势, 用
初看起来,
|N|=2∗|E|
, 但再想想,
N
的所有元素乘以2得到的新的集合不就是
这个悖论叫伽利略悖论。
可数的定义
Countable. 若一个集合中的元素可以与自然数一一对应起来, 或者说是可以编号的,那这个集合就是可数的。
有限集合肯定是可数的。
无限集合有的可数:
* 自然数,奇数,偶数
* 代数数
* 有理数
有的不可数:
* 实数
* 无理数
超越数是否可数还未知。
有理数的可数性
1/1
1/2,2/1
1/3,3/1
1/4,2/3,3/2,4/1
...
将所有的有理数按以上顺序排列。排列规则是:第
n
行的分子分母之和为
代数数的可数性
代数数的可数性则是通过穷举代数方程证明的。
代数方程的一般写法是:
它的系数和称为方程的 高。对于特定的高, 可以穷举出所有的代数方程。代数方程都可穷举了, 其对应的解自然也是可穷举可编号的。
真子集
对有数集来说,自己的真子集的基数一定小于自己。但对无限集来说就不一定了:无限集的真子集可以与自己等势(基数相同), 例如自然数和偶数。