可数集

伽利略悖论

考虑一个问题:
集合 N 表示所有自然数:N=1,2,3,4,5,6...
集合 E 表示所有偶数: E=2,4,6,...
N E, 哪个的元素个数多些?

集合 S 的元素的个数也叫做集合的或者, 用|S|表示。
初看起来, |N|=2|E| , 但再想想, N 的所有元素乘以2得到的新的集合不就是E吗? 所以 |N|=|E| .

这个悖论叫伽利略悖论。

可数的定义

Countable. 若一个集合中的元素可以与自然数一一对应起来, 或者说是可以编号的,那这个集合就是可数的。
有限集合肯定是可数的。
无限集合有的可数:
* 自然数,奇数,偶数
* 代数数
* 有理数
有的不可数:
* 实数
* 无理数
超越数是否可数还未知。

有理数的可数性

1/1
1/2,2/1
1/3,3/1
1/4,2/3,3/2,4/1
...
将所有的有理数按以上顺序排列。排列规则是:第 n 行的分子分母之和为n+1。这样就可以为所有有理数编号,所以有理数是可数的。

代数数的可数性

代数数的可数性则是通过穷举代数方程证明的。
代数方程的一般写法是:

nanxn=0,an, n

它的系数和称为方程的 。对于特定的高, 可以穷举出所有的代数方程。代数方程都可穷举了, 其对应的解自然也是可穷举可编号的。

真子集

对有数集来说,自己的真子集的基数一定小于自己。但对无限集来说就不一定了:无限集的真子集可以与自己等势(基数相同), 例如自然数和偶数。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值