CNN神经网络进行csv格式数据的预测代码

该文展示了一个使用卷积神经网络(CNN)的Python代码示例,该模型基于Keras库处理CSV格式的数据进行预测。首先导入必要的库如pandas和Keras,接着读取CSV文件,将数据转换为NumPy数组,然后构建CNN模型,包括卷积层、池化层和dropout层,最后编译并训练模型进行预测。
摘要由CSDN通过智能技术生成

好的,下面是一个基于 CNN 的网络进行 CSV 格式数据的预测的简单示例代码:

首先,我们需要导入必要的库:

import pandas as pd
import numpy as np
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras.utils import to_categorical
from keras.preprocessing import image

然后,我们可以使用 pandas 库读取 CSV 文件并将其转换

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>