基于CBAM-CNN卷积神经网络预测研究(Python代码实现)

 💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Python代码及数据


💥1 概述

CBAM(CBAM-CNN)是一种用于计算机视觉领域的卷积神经网络结构,它能够有效地从图像中学习关注和调整。CBAM模型结合了通道注意力模块(Channel Attention Module)和空间注意力模块(Spatial Attention Module)两个部分,用于提升卷积神经网络的性能。

通道注意力模块(CAM)旨在通过学习不同通道之间的相关性,为每个通道分配适当的注意力权重。该模块首先通过全局平均池化获得整个通道的平均值,然后使用两个全连接层来生成一组注意力权重。这些权重用于调整每个通道的特征图。

空间注意力模块(SAM)旨在学习图像中不同空间区域的重要性。该模块通过对特征图在不同空间维度上进行最大池化和平均池化操作,然后使用一个卷积层来生成一组注意力权重。最后,这些权重被应用于原始特征图,以增强具有重要空间信息的区域。

通过结合通道注意力模块和空间注意力模块,CBAM能够动态地选择和调整特征图的通道和空间注意力,从而提取更准确和具有区分力的特征表示。这种注意力机制有助于网络更好地对图像进行感知,从而改善图像分类、目标检测、图像分割等计算机视觉任务的性能。

针对预测任务,可以使用CBAM-CNN模型进行图像分类或目标检测。在图像分类任务中,CBAM-CNN可以通过自适应地关注重要的通道和空间区域,提取图像特征并进行分类。在目标检测任务中,CBAM-CNN可以辅助检测网络对目标区域进行准确定位和分类。

需要注意的是,CBAM-CNN只是一种网络结构,具体的预测研究还需要根据具体的任务和数据集进行调整和优化。

📚2 运行结果

 部分代码:

def forward(self, x):
        # 1.最大池化分支
        max_branch = self.MaxPool(x)
        # 送入MLP全连接神经网络, 得到权重
        max_in = max_branch.view(max_branch.size(0), -1)
        max_weight = self.fc_MaxPool(max_in)

        # 2.全局池化分支
        avg_branch = self.AvgPool(x)
        # 送入MLP全连接神经网络, 得到权重
        avg_in = avg_branch.view(avg_branch.size(0), -1)
        avg_weight = self.fc_AvgPool(avg_in)

        # MaxPool + AvgPool 激活后得到权重weight
        weight = max_weight + avg_weight
        weight = self.sigmoid(weight)

        # 将维度为b, c的weight, reshape成b, c, 1, 1 与 输入x 相乘
        h, w = weight.shape
        # 通道注意力Mc
        Mc = torch.reshape(weight, (h, w, 1))

        # 乘积获得结果
        x = Mc * x

        return x


class SpatialAttentionModul(nn.Module):  # 空间注意力模块
    def __init__(self, in_channel):
        super(SpatialAttentionModul, self).__init__()
        self.conv = nn.Conv1d(2, 1, 7, padding=3)
        self.sigmoid = nn.Sigmoid()

    def forward(self, x):
        # x维度为 [N, C, H, W] 沿着维度C进行操作, 所以dim=1, 结果为[N, H, W]
        MaxPool = torch.max(x, dim=1).values  # torch.max 返回的是索引和value, 要用.values去访问值才行!
        AvgPool = torch.mean(x, dim=1)

        # 增加维度, 变成 [N, 1, H, W]
        MaxPool = torch.unsqueeze(MaxPool, dim=1)
        AvgPool = torch.unsqueeze(AvgPool, dim=1)

        # 维度拼接 [N, 2, H, W]
        x_cat = torch.cat((MaxPool, AvgPool), dim=1)  # 获得特征图

        # 卷积操作得到空间注意力结果
        x_out = self.conv(x_cat)
        Ms = self.sigmoid(x_out)

        # 与原图通道进行乘积
        x = Ms * x

        return x


if __name__ == '__main__':
    inputs = torch.randn(32, 512, 16)
    model = CBAM(in_channel=512)  # CBAM模块, 可以插入CNN及任意网络中, 输入特征图in_channel的维度
    def forward(self, x):
        # 1.最大池化分支
        max_branch = self.MaxPool(x)
        # 送入MLP全连接神经网络, 得到权重
        max_in = max_branch.view(max_branch.size(0), -1)
        max_weight = self.fc_MaxPool(max_in)

        # 2.全局池化分支
        avg_branch = self.AvgPool(x)
        # 送入MLP全连接神经网络, 得到权重
        avg_in = avg_branch.view(avg_branch.size(0), -1)
        avg_weight = self.fc_AvgPool(avg_in)

        # MaxPool + AvgPool 激活后得到权重weight
        weight = max_weight + avg_weight
        weight = self.sigmoid(weight)

        # 将维度为b, c的weight, reshape成b, c, 1, 1 与 输入x 相乘
        h, w = weight.shape
        # 通道注意力Mc
        Mc = torch.reshape(weight, (h, w, 1))

        # 乘积获得结果
        x = Mc * x

        return x


class SpatialAttentionModul(nn.Module):  # 空间注意力模块
    def __init__(self, in_channel):
        super(SpatialAttentionModul, self).__init__()
        self.conv = nn.Conv1d(2, 1, 7, padding=3)
        self.sigmoid = nn.Sigmoid()

    def forward(self, x):
        # x维度为 [N, C, H, W] 沿着维度C进行操作, 所以dim=1, 结果为[N, H, W]
        MaxPool = torch.max(x, dim=1).values  # torch.max 返回的是索引和value, 要用.values去访问值才行!
        AvgPool = torch.mean(x, dim=1)

        # 增加维度, 变成 [N, 1, H, W]
        MaxPool = torch.unsqueeze(MaxPool, dim=1)
        AvgPool = torch.unsqueeze(AvgPool, dim=1)

        # 维度拼接 [N, 2, H, W]
        x_cat = torch.cat((MaxPool, AvgPool), dim=1)  # 获得特征图

        # 卷积操作得到空间注意力结果
        x_out = self.conv(x_cat)
        Ms = self.sigmoid(x_out)

        # 与原图通道进行乘积
        x = Ms * x

        return x


if __name__ == '__main__':
    inputs = torch.randn(32, 512, 16)
    model = CBAM(in_channel=512)  # CBAM模块, 可以插入CNN及任意网络中, 输入特征图in_channel的维度

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]黄昌顺,张金萍.基于CBAM-CNN的滚动轴承故障诊断方法[J].现代制造工程,2022(11):137-143.DOI:10.16731/j.cnki.1671-3133.2022.11.022.

[2]杜先君,巩彬,余萍等.基于CBAM-CNN的模拟电路故障诊断[J].控制与决策,2022,37(10):2609-2618.DOI:10.13195/j.kzyjc.2021.1111.

🌈4 Python代码及数据

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
抱歉,我无法提供完整的CBAM-CNN-LSTM股票预测Python代码,因为这涉及到一个复杂的模型架构和数据处理步骤。不过,我可以向你解释一下这个模型的主要思想和步骤,帮助你理解如何实现它。 CBAM-CNN-LSTM模型是一种结合了卷神经网络(CNN)、循环神经网络(LSTM)和通道与空间注意力机制(CBAM)的混合模型,用于股票预测。下面是一个简单的伪代码示例,展示了CBAM-CNN-LSTM模型的主要步骤: ```python # 导入必要的库 import numpy as np import pandas as pd from keras.models import Sequential from keras.layers import LSTM, Dense, Conv1D, MaxPooling1D, GlobalAveragePooling1D # 加载和准备数据 data = pd.read_csv('stock_data.csv') # 数据预处理步骤... # 构建CBAM-CNN-LSTM模型 model = Sequential() model.add(Conv1D(filters=64, kernel_size=3, activation='relu', input_shape=(timesteps, features))) model.add(MaxPooling1D(pool_size=2)) model.add(Conv1D(filters=128, kernel_size=3, activation='relu')) model.add(MaxPooling1D(pool_size=2)) model.add(GlobalAveragePooling1D()) model.add(LSTM(units=64)) model.add(Dense(units=1, activation='sigmoid')) # 编译和训练模型 model.compile(optimizer='adam', loss='mean_squared_error') model.fit(X_train, y_train, epochs=10, batch_size=32) # 使用模型进行预测 predictions = model.predict(X_test) # 评估模型性能 # ... ``` 这只是一个简单的示例,实际应用中可能需要更复杂的数据预处理、调参等步骤。你可以根据自己的需求和数据集进行相应的修改和调整。记得根据你的数据特性,进行适当的调整和优化,以便获得更好的预测结果。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值