自动识别反光衣穿戴系统应用神经网络算法和边缘云计算分析来替代双眼,自动识别反光衣穿戴系统对监控画面进行实时分析识别,自动识别反光衣穿戴系统从相机视频流中抓拍图像和报警在摄像头可视范围内自动识别人员是不是戴安全帽和反光衣。一旦发现有人并没有按照规定穿戴佩戴安全帽、反光衣,系统会开展语音播报,并记录违规行为。
YOLOv7 的发展方向与当前主流的实时目标检测器不同,研究团队希望它能够同时支持移动 GPU 和从边缘到云端的 GPU 设备。除了架构优化之外,该研究提出的方法还专注于训练过程的优化,将重点放在了一些优化模块和优化方法上。这可能会增加训练成本以提高目标检测的准确性,但不会增加推理成本。研究者将提出的模块和优化方法称为可训练的「bag-of-freebies」。
YOLOv7 在 5 FPS 到 160 FPS 范围内,速度和精度都超过了所有已知的目标检测器
并在 V100 上,30 FPS 的情况下达到实时目标检测器的最高精度 56.8% AP。YOLOv7 是在 MS COCO 数据集上从头开始训练的,不使用任何其他数据集或预训练权重。
相对于其他类型的工具,YOLOv7-E6 目标检测器(56 FPS V100,55.9% AP)比基于 transformer 的检测器 SWINL Cascade-Mask R-CNN(9.2 FPS A100,53.9% AP)速度上高出 509%,精度高出 2%,比基于卷积的检测器 ConvNeXt-XL Cascade-Mask R-CNN (8.6 FPS A100, 55.2% AP) 速度高出 551%,精度高出 0.7%。
在工业作业中,安全一直是一种永恒的首要保障的主题,反光衣和安全帽在防止安全作业中起到很重要的作用。因而,按照规定佩戴反光衣和工作帽是安全作业的对应措施。但具体操作过程中,通常有的人重视程度不够,不按规定穿反光衣进到作业区域,这样就带来了很大的安全隐患,因为后台人员很难第一时间就发现并及时制止劝阻违规行为。
自动识别反光衣穿戴系统利用现场已有的监控摄像头,可以做到全天候24小时360度不间断自动剖析识别监控画面视频数据信息,不用人工干预。当自动识别反光衣穿戴系统识别到人员不穿反光服时,马上即时语音提醒,并同步违规信息到后台,合理协助后台人员高效作业,减少人力成本。